首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Despite recent progress in proteomics most protein complexes are still unknown. Identification of these complexes will help us understand cellular regulatory mechanisms and support development of new drugs. Therefore it is really important to establish detailed information about the composition and the abundance of protein complexes but existing algorithms can only give qualitative predictions. Herein, we propose a new approach based on stochastic simulations of protein complex formation that integrates multi-source data—such as protein abundances, domain-domain interactions and functional annotations—to predict alternative forms of protein complexes together with their abundances. This method, called SiComPre (Simulation based Complex Prediction), achieves better qualitative prediction of yeast and human protein complexes than existing methods and is the first to predict protein complex abundances. Furthermore, we show that SiComPre can be used to predict complexome changes upon drug treatment with the example of bortezomib. SiComPre is the first method to produce quantitative predictions on the abundance of molecular complexes while performing the best qualitative predictions. With new data on tissue specific protein complexes becoming available SiComPre will be able to predict qualitative and quantitative differences in the complexome in various tissue types and under various conditions.  相似文献   

2.
Ross GA  Morris GM  Biggin PC 《PloS one》2012,7(3):e32036
Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.  相似文献   

3.
Protein folding and protein binding are similar processes. In both, structural units combinatorially associate with each other. In the case of folding, we mostly handle relatively small units, building blocks or domains, that are covalently linked. In the case of multi-molecular binding, the subunits are relatively large and are associated only by non-covalent bonds. Experimentally, the difficulty in the determination of the structures of such large assemblies increases with the complex size and the number of components it contains. Computationally, the prediction of the structures of multi-molecular complexes has largely not been addressed, probably owing to the magnitude of the combinatorial complexity of the problem. Current docking algorithms mostly target prediction of pairwise interactions. Here our goal is to predict the structures of multi-unit associations, whether these are chain-connected as in protein folding, or separate disjoint molecules in the assemblies. We assume that the structures of the single units are known, either through experimental determination or modeling. Our aim is to combinatorially assemble these units to predict their structure. To address this problem we have developed CombDock. CombDock is a combinatorial docking algorithm for the structural units assembly problem. Below, we briefly describe the algorithm and present examples of its various applications to folding and to multi-molecular assemblies. To test the robustness of the algorithm, we use inaccurate models of the structural units, derived either from crystal structures of unbound molecules or from modeling of the target sequences. The algorithm has been able to predict near-native arrangements of the input structural units in almost all of the cases, suggesting that a combinatorial approach can overcome the imperfect shape complementarity caused by the inaccuracy of the models. In addition, we further show that through a combinatorial docking strategy it is possible to enhance the predictions of pairwise interactions involved in a multi-molecular assembly.  相似文献   

4.
The experimental determination of the structure of protein complexes cannot keep pace with the generation of interactomic data, hence resulting in an ever-expanding gap. As the structural details of protein complexes are central to a full understanding of the function and dynamics of the cell machinery, alternative strategies are needed to circumvent the bottleneck in structure determination. Computational protein docking is a valid and valuable approach to model the structure of protein complexes. In this work, we describe a novel computational strategy to predict the structure of protein complexes based on data-driven docking: VORFFIP-driven dock (V-D2OCK). This new approach makes use of our newly described method to predict functional sites in protein structures, VORFFIP, to define the region to be sampled during docking and structural clustering to reduce the number of models to be examined by users. V-D2OCK has been benchmarked using a validated and diverse set of protein complexes and compared to a state-of-art docking method. The speed and accuracy compared to contemporary tools justifies the potential use of VD2OCK for high-throughput, genome-wide, protein docking. Finally, we have developed a web interface that allows users to browser and visualize V-D2OCK predictions from the convenience of their web-browsers.  相似文献   

5.
6.
MOTIVATION: Given that association and dissociation of protein molecules is crucial in most biological processes several in silico methods have been recently developed to predict protein-protein interactions. Structural evidence has shown that usually interacting pairs of close homologs (interologs) physically interact in the same way. Moreover, conservation of an interaction depends on the conservation of the interface between interacting partners. In this article we make use of both, structural similarities among domains of known interacting proteins found in the Database of Interacting Proteins (DIP) and conservation of pairs of sequence patches involved in protein-protein interfaces to predict putative protein interaction pairs. RESULTS: We have obtained a large amount of putative protein-protein interaction (approximately 130,000). The list is independent from other techniques both experimental and theoretical. We separated the list of predictions into three sets according to their relationship with known interacting proteins found in DIP. For each set, only a small fraction of the predicted protein pairs could be independently validated by cross checking with the Human Protein Reference Database (HPRD). The fraction of validated protein pairs was always larger than that expected by using random protein pairs. Furthermore, a correlation map of interacting protein pairs was calculated with respect to molecular function, as defined in the Gene Ontology database. It shows good consistency of the predicted interactions with data in the HPRD database. The intersection between the lists of interactions of other methods and ours produces a network of potentially high-confidence interactions.  相似文献   

7.
Structural characterization of protein‐protein interactions is essential for understanding life processes at the molecular level. However, only a fraction of protein interactions have experimentally resolved structures. Thus, reliable computational methods for structural modeling of protein interactions (protein docking) are important for generating such structures and understanding the principles of protein recognition. Template‐based docking techniques that utilize structural similarity between target protein‐protein interaction and cocrystallized protein‐protein complexes (templates) are gaining popularity due to generally higher reliability than that of the template‐free docking. However, the template‐based approach lacks explicit penalties for intermolecular penetration, as opposed to the typical free docking where such penalty is inherent due to the shape complementarity paradigm. Thus, template‐based docking models are commonly assumed to require special treatment to remove large structural penetrations. In this study, we compared clashes in the template‐based and free docking of the same proteins, with crystallographically determined and modeled structures. The results show that for the less accurate protein models, free docking produces fewer clashes than the template‐based approach. However, contrary to the common expectation, in acceptable and better quality docking models of unbound crystallographically determined proteins, the clashes in the template‐based docking are comparable to those in the free docking, due to the overall higher quality of the template‐based docking predictions. This suggests that the free docking refinement protocols can in principle be applied to the template‐based docking predictions as well. Proteins 2016; 85:39–45. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Recent biochemical studies have indicated a number of regions in both the 16S and 23S rRNA that are exposed on the ribosomal subunit surface. In order to predict potential interactions between these regions we applied novel phylogenetically-based statistical methods to detect correlated nucleotide changes occurring between the rRNA molecules. With these methods we discovered a number of highly significant correlated changes between different sets of nucleotides in the two ribosomal subunits. The predictions with the highest correlation values belong to regions of the rRNA subunits that are in close proximity according to recent crystal structures of the entire ribosome. We also applied a new statistical method of detecting base triple interactions within these same rRNA subunit regions. This base triple statistic predicted a number of new base triples not detected by pair-wise interaction statistics within the rRNA molecules. Our results suggest that these statistical methods may enhance the ability to detect novel structural elements both within and between RNA molecules.  相似文献   

9.
Protein-DNA interactions play an essential role in the genetic activities of life. Many structures of protein-DNA complexes are already known, but the common rules on how and where proteins bind to DNA have not emerged. Many attempts have been made to predict protein-DNA interactions using structural information, but the success rate is still about 80%. We analyzed 63 protein-DNA complexes by focusing our attention on the shape of the molecular surface of the protein and DNA, along with the electrostatic potential on the surface, and constructed a new statistical evaluation function to make predictions of DNA interaction sites on protein molecular surfaces. The shape of the molecular surface was described by a combination of local and global average curvature, which are intended to describe the small convex and concave and the large-scale concave curvatures of the protein surface preferentially appearing at DNA-binding sites. Using these structural features, along with the electrostatic potential obtained by solving the Poisson-Boltzmann equation numerically, we have developed prediction schemes with 86% and 96% accuracy for DNA-binding and non-DNA-binding proteins, respectively.  相似文献   

10.
11.
While cryo-electron microscopy (cryo-EM) has revolutionized the structure determination of supramolecular protein complexes that are refractory to structure determination by X-ray crystallography, structure determination by cryo-EM can nonetheless be complicated by excessive conformational flexibility or structural heterogeneity resulting from weak or transient protein–protein association. Since such transient complexes are often critical for function, specialized approaches must be employed for the determination of meaningful structure–function relationships. Here, we outline examples in which transient protein–protein interactions have been visualized successfully by cryo-EM in the biosynthesis of fatty acids, polyketides, and terpenes. These studies demonstrate the utility of chemical crosslinking to stabilize transient protein–protein complexes for cryo-EM structural analysis, as well as the use of partial signal subtraction and localized reconstruction to extract useful structural information out of cryo-EM data collected from inherently dynamic systems. While these approaches do not always yield atomic resolution insights on protein–protein interactions, they nonetheless enable direct experimental observation of complexes in assembly-line biosynthesis that would otherwise be too fleeting for structural analysis.  相似文献   

12.
Structural biology offers a versatile arsenal of techniques and methods to investigate the structure and conformational dynamics of proteins and their assemblies. The growing field of targeted protein degradation centres on the premise of developing small molecules, termed degraders, to induce proximity between an E3 ligase and a protein of interest to be signalled for degradation. This new drug modality brings with it new opportunities and challenges to structural biologists. Here we discuss how several structural biology techniques, including nuclear magnetic resonance, cryo-electron microscopy, structural mass spectrometry and small angle scattering, have been explored to complement X-ray crystallography in studying degraders and their ternary complexes. Together the studies covered in this review make a case for the invaluable perspectives that integrative structural biology techniques in solution can bring to understanding ternary complexes and designing degraders.  相似文献   

13.
The coverage and reliability of protein-protein interactions determined by high-throughput experiments still needs to be improved, especially for higher organisms, therefore the question persists, how interactions can be verified and predicted by computational approaches using available data on protein structural complexes. Recently we developed an approach called IBIS (Inferred Biomolecular Interaction Server) to predict and annotate protein-protein binding sites and interaction partners, which is based on the assumption that the structural location and sequence patterns of protein-protein binding sites are conserved between close homologs. In this study first we confirmed high accuracy of our method and found that its accuracy depends critically on the usage of all available data on structures of homologous complexes, compared to the approaches where only a non-redundant set of complexes is employed. Second we showed that there exists a trade-off between specificity and sensitivity if we employ in the prediction only evolutionarily conserved binding site clusters or clusters supported by only one observation (singletons). Finally we addressed the question of identifying the biologically relevant interactions using the homology inference approach and demonstrated that a large majority of crystal packing interactions can be correctly identified and filtered by our algorithm. At the same time, about half of biological interfaces that are not present in the protein crystallographic asymmetric unit can be reconstructed by IBIS from homologous complexes without the prior knowledge of crystal parameters of the query protein.  相似文献   

14.
Fast and proper assessment of bio macro-molecular complex structural rigidity as a measure of structural stability can be useful in systematic studies to predict molecular function, and can also enable the design of rapid scoring functions to rank automatically generated bio-molecular complexes. Based on the graph theoretical approach of Jacobs et al. [Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF (2001) Protein flexibility predictions using graph theory. Proteins: Struct Funct Genet 44:150–165] for expressing molecular flexibility, we propose a new scheme to analyze the structural stability of bio-molecular complexes. This analysis is performed in terms of the identification in interacting subunits of clusters of flappy amino acids (those constituting regions of potential internal motion) that undergo an increase in rigidity at complex formation. Gains in structural rigidity of the interacting subunits upon bio-molecular complex formation can be evaluated by expansion of the network of intra-molecular inter-atomic interactions to include inter-molecular inter-atomic interaction terms. We propose two indices for quantifying this change: one local, which can express localized (at the amino acid level) structural rigidity, the other global to express overall structural stability for the complex. The new system is validated with a series of protein complex structures reported in the protein data bank. Finally, the indices are used as scoring coefficients to rank automatically generated protein complex decoys.  相似文献   

15.
Protein docking is essential for structural characterization of protein interactions. Besides providing the structure of protein complexes, modeling of proteins and their complexes is important for understanding the fundamental principles and specific aspects of protein interactions. The accuracy of protein modeling, in general, is still less than that of the experimental approaches. Thus, it is important to investigate the applicability of docking techniques to modeled proteins. We present new comprehensive benchmark sets of protein models for the development and validation of protein docking, as well as a systematic assessment of free and template-based docking techniques on these sets. As opposed to previous studies, the benchmark sets reflect the real case modeling/docking scenario where the accuracy of the models is assessed by the modeling procedure, without reference to the native structure (which would be unknown in practical applications). We also expanded the analysis to include docking of protein pairs where proteins have different structural accuracy. The results show that, in general, the template-based docking is less sensitive to the structural inaccuracies of the models than the free docking. The near-native docking poses generated by the template-based approach, typically, also have higher ranks than those produces by the free docking (although the free docking is indispensable in modeling the multiplicity of protein interactions in a crowded cellular environment). The results show that docking techniques are applicable to protein models in a broad range of modeling accuracy. The study provides clear guidelines for practical applications of docking to protein models.  相似文献   

16.
MOTIVATION: Identifying protein enzymatic or pharmacological activities are important areas of research in biology and chemistry. Biological and chemical databases are increasingly being populated with linkages between protein sequences and chemical structures. There is now sufficient information to apply machine-learning techniques to predict interactions between chemicals and proteins at a genome scale. Current machine-learning techniques use as input either protein sequences and structures or chemical information. We propose here a method to infer protein-chemical interactions using heterogeneous input consisting of both protein sequence and chemical information. RESULTS: Our method relies on expressing proteins and chemicals with a common cheminformatics representation. We demonstrate our approach by predicting whether proteins can catalyze reactions not present in training sets. We also predict whether a given drug can bind a target, in the absence of prior binding information for that drug and target. Such predictions cannot be made with current machine-learning techniques requiring binding information for individual reactions or individual targets.  相似文献   

17.
18.
In spite of the abundance of oligomeric proteins within a cell, the structural characterization of protein–protein interactions is still a challenging task. In particular, many of these interactions involve heteromeric complexes, which are relatively difficult to determine experimentally. Hence there is growing interest in using computational techniques to model such complexes. However, assembling large heteromeric complexes computationally is a highly combinatorial problem. Nonetheless the problem can be simplified greatly by considering interactions between protein trimers. After dimers and monomers, triangular trimers (i.e. trimers with pair‐wise contacts between all three pairs of proteins) are the most frequently observed quaternary structural motifs according to the three‐dimensional (3D) complex database. This article presents DockTrina, a novel protein docking method for modeling the 3D structures of nonsymmetrical triangular trimers. The method takes as input pair‐wise contact predictions from a rigid body docking program. It then scans and scores all possible combinations of pairs of monomers using a very fast root mean square deviation test. Finally, it ranks the predictions using a scoring function which combines triples of pair‐wise contact terms and a geometric clash penalty term. The overall approach takes less than 2 min per complex on a modern desktop computer. The method is tested and validated using a benchmark set of 220 bound and seven unbound protein trimer structures. DockTrina will be made available at http://nano‐d.inrialpes.fr/software/docktrina . Proteins 2014; 82:34–44. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
In the last few years, SAXS of biological materials has been rapidly evolving and promises to move structural analysis to a new level. Recent innovations in SAXS data analysis allow ab initio shape predictions of proteins in solution. Furthermore, experimental scattering data can be compared to calculated scattering curves from the growing data base of solved structures and also identify aggregation and unfolded proteins. Combining SAXS results with atomic resolution structures enables detailed characterizations in solution of mass, radius, conformations, assembly, and shape changes associated with protein folding and functions. SAXS can efficiently reveal the spatial organization of protein domains, including domains missing from or disordered in known crystal structures, and establish cofactor or substrate-induced conformational changes. For flexible domains or unstructured regions that are not amenable for study by many other structural techniques, SAXS provides a unique technology. Here, we present SAXS shape predictions for PCNA that accurately predict a trimeric ring assembly and for a full-length DNA repair glycosylase with a large unstructured region. These new results in combination with illustrative published data show how SAXS combined with high resolution crystal structures efficiently establishes architectures, assemblies, conformations, and unstructured regions for proteins and protein complexes in solution.  相似文献   

20.
Protein-protein or protein-ion interactions with multisite proteins are essential to the regulation of intracellular and extracellular events. There is, however, limited understanding of how ligand-multisite protein interactions selectively regulate the activities of multiple protein targets. In this paper, we focus on the important calcium (Ca(2+)) binding protein calmodulin (CaM), which has four Ca(2+) ion binding sites and regulates the activity of over 30 other proteins. Recent progress in structural studies has led to significant improvements in the understanding of Ca(2+)-CaM-dependent regulation mechanisms. However, no quantitative model is currently available that can fully explain how the structural diversity of protein interaction surfaces leads to selective activation of protein targets. In this paper, we analyze the multisite protein-ligand binding mechanism using mathematical modelling and experimental data for Ca(2+)-CaM-dependent protein targets. Our study suggests a potential mechanism for selective and differential activation of Ca(2+)-CaM targets by the same CaM molecules, which are involved in a variety of intracellular functions. The close agreement between model predictions and experimental dose-response curves for CaM targets available in the literature suggests that such activation is due to the selective activity of CaM conformations in complexes with variable numbers of Ca(2+) ions. Although the paper focuses on the Ca(2+)-CaM pair as a particularly data rich example, the proposed model predictions are quite general and can easily be extended to other multisite proteins. The results of the study may therefore be proposed as a general explanation for multifunctional target regulation by multisite proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号