首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Montane tropical rainforests are critically important areas for global bird diversity, but are projected to be highly vulnerable to contemporary climate change. Upslope shifts of lowland species may partially offset declines in upland species but also result in a process of lowland biotic attrition. This latter process is contingent on the absence of species adapted to novel warm climates, and isolation from pools of potential colonizers. In the Australian Wet Tropics, species distribution modelling has forecast critical declines in suitable environmental area for upland endemic birds, raising the question of the future role of both natural and assisted dispersal in species survival, but information is lacking for important neighbouring rainforest regions. Here we use expanded geographic coverage of data to model the realized distributions of 120 bird species found in north‐eastern Australian rainforest, including species from potential source locations in the north and recipient locations in the south. We reaffirm previous conclusions as to the high vulnerability of this fauna to global warming, and extend the list of species whose suitable environmental area is projected to decrease. However, we find that expansion of suitable area for some species currently restricted to northern rainforests has the potential to offset biotic attrition in lowland forest of the Australian Wet Tropics. By examining contrasting dispersal scenarios, we show that responses to climate change in this region may critically depend on dispersal limitation, as climate change shifts the suitable environmental envelopes of many species south into currently unsuitable habitats. For lowland and northern species, future change in vegetation connectivity across contemporary habitat barriers is likely to be an important mediator of climate change impacts. In contrast, upland species are projected to become increasingly isolated and restricted. Their survival is likely to be more dependent on the viability of assisted migration, and the emergence and persistence of suitable environments at recipient locations.  相似文献   

2.
Endemic species and ecosystem sensitivity to climate change in Namibia   总被引:1,自引:0,他引:1  
We present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ~2050 and ~2080. We used both niche‐based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning. Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life‐form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life‐formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north‐eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2– currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ~2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ~2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region.  相似文献   

3.
Climate change is shifting species’ distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species’ responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species’ responses across different studies be limited to studies with similar methodological approaches; (3) meta‐analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species’ distribution and phenology changes.  相似文献   

4.
Climate change has already caused local extinction in many plants and animals, based on surveys spanning many decades. As climate change accelerates, the pace of these extinctions may also accelerate, potentially leading to large-scale, species-level extinctions. We tested this hypothesis in a montane lizard. We resurveyed 18 mountain ranges in 2021–2022 after only ~7 years. We found rates of local extinction among the fastest ever recorded, which have tripled in the past ~7 years relative to the preceding ~42 years. Further, climate change generated local extinction in ~7 years similar to that seen in other organisms over ~70 years. Yet, contrary to expectations, populations at two of the hottest sites survived. We found that genomic data helped predict which populations survived and which went extinct. Overall, we show the increasing risk to biodiversity posed by accelerating climate change and the opportunity to study its effects over surprisingly brief timescales.  相似文献   

5.
Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates.  相似文献   

6.
Climate change is having a significant impact on ecosystem services and is likely to become increasingly important as this phenomenon intensifies. Future impacts can be difficult to assess as they often involve long timescales, dynamic systems with high uncertainties, and are typically confounded by other drivers of change. Despite a growing literature on climate change impacts on ecosystem services, no quantitative syntheses exist. Hence, we lack an overarching understanding of the impacts of climate change, how they are being assessed, and the extent to which other drivers, uncertainties, and decision making are incorporated. To address this, we systematically reviewed the peer‐reviewed literature that assesses climate change impacts on ecosystem services at subglobal scales. We found that the impact of climate change on most types of services was predominantly negative (59% negative, 24% mixed, 4% neutral, 13% positive), but varied across services, drivers, and assessment methods. Although uncertainty was usually incorporated, there were substantial gaps in the sources of uncertainty included, along with the methods used to incorporate them. We found that relatively few studies integrated decision making, and even fewer studies aimed to identify solutions that were robust to uncertainty. For management or policy to ensure the delivery of ecosystem services, integrated approaches that incorporate multiple drivers of change and account for multiple sources of uncertainty are needed. This is undoubtedly a challenging task, but ignoring these complexities can result in misleading assessments of the impacts of climate change, suboptimal management outcomes, and the inefficient allocation of resources for climate adaptation.  相似文献   

7.
Cicadas are large hemipteran insects characterized by unique life‐history traits, such as extraordinarily long life cycles, a subterranean/terrestrial habitat transition, xylem sap‐feeding and melodious sound production. These fascinating features of cicadas have attracted much attention in the research fields of physiology and ecology, resulting in an accumulation of knowledge about the underlying mechanisms and their adaptive significance. Although community‐level responses to recent climate change have already been documented for cicada fauna, an understanding of their causal relationships is still at the initial stages. In this review, we summarize current knowledge about environmental adaptations of cicadas to facilitate a deeper understanding of the ecophysiological consequences of climate change. We first outline the diverse responses of cicadas to environmental factors, mainly temperature, and their strategies to cope with naturally fluctuating environments. Then, we discuss the consequence of upcoming climate change by consolidating the current findings. This review highlights the fact that fitness‐relevant activities are fine‐tuned to a species‐specific temperature optimum to achieve habitat segregation among coexisting species, implying that cicada diversity is highly susceptible to climate warming. As a result of their conspicuous large bodies and species‐specific calling songs, cicadas are promising candidates for use as bioindicator species to monitor ecological impacts of climate change. We encourage future works that continuously quantify population‐ and community‐level responses to upcoming climate change, as well as unveil mechanistic links between physiological traits and ecological consequences.  相似文献   

8.

Aim

Understanding how grain size affects our ability to characterize species responses to ongoing climate change is of crucial importance in the context of an increasing awareness for the substantial difference that exists between coarse spatial resolution macroclimatic data sets and the microclimate actually experienced by organisms. Climate change impacts on biodiversity are expected to peak in mountain areas, wherein the differences between macro and microclimates are precisely the largest. Based on a newly generated fine-scale environmental data for the Canary Islands, we assessed whether data at 100 m resolution is able to provide more accurate predictions than available data at 1 km resolution. We also analysed how future climate suitability predictions of island endemic bryophytes differ depending on the grain size of grids.

Location

Canary Islands.

Time period

Present (1979–2013) and late-century (2071–2100).

Taxa

Bryophytes.

Methods

We compared the accuracy and spatial predictions using ensemble of small models for 14 Macaronesian endemic bryophyte species. We used two climate data sets: CHELSA v1.2 (~1 km) and CanaryClim v1.0 (100 m), a downscaled version of the latter utilizing data from local weather stations. CanaryClim also encompasses future climate data from five individual model intercomparison projects for three warming shared socio-economic pathways.

Results

Species distribution models generated from CHELSA and CanaryClim exhibited a similar accuracy, but CanaryClim predicted buffered warming trends in mid-elevation ridges. CanaryClim consistently returned higher proportions of newly suitable pixels (8%–28%) than CHELSA models (0%–3%). Consequently, the proportion of species predicted to occupy pixels of uncertain suitability was higher with CHELSA (3–8 species) than with CanaryClim (0–2 species).

Main conclusions

The resolution of climate data impacted the predictions rather than the performance of species distribution models. Our results highlight the crucial role that fine-resolution climate data sets can play in predicting the potential distribution of both microrefugia and new suitable range under warming climate.  相似文献   

9.
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire‐tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models.  相似文献   

10.
Understanding and predicting the consequences of warming for complex ecosystems and indeed individual species remains a major ecological challenge. Here, we investigated the effect of increased seawater temperatures on the metabolic and consumption rates of five distinct marine species. The experimental species reflected different trophic positions within a typical benthic East Atlantic food web, and included a herbivorous gastropod, a scavenging decapod, a predatory echinoderm, a decapod and a benthic-feeding fish. We examined the metabolism–body mass and consumption–body mass scaling for each species, and assessed changes in their consumption efficiencies. Our results indicate that body mass and temperature effects on metabolism were inconsistent across species and that some species were unable to meet metabolic demand at higher temperatures, thus highlighting the vulnerability of individual species to warming. While body size explains a large proportion of the variation in species'' physiological responses to warming, it is clear that idiosyncratic species responses, irrespective of body size, complicate predictions of population and ecosystem level response to future scenarios of climate change.  相似文献   

11.
12.
Stream ecosystems are especially vulnerable to climate warming because most aquatic organisms are ectothermic and live in dendritic networks that are easily fragmented. Many bioclimatic models predict significant range contractions in stream biotas, but subsequent biological assessments have rarely been done to determine the accuracy of these predictions. Assessments are difficult because model predictions are either untestable or so imprecise that definitive answers may not be obtained within timespans relevant for effective conservation. Here, we develop the equations for calculating isotherm shift rates (ISRs) in streams that can be used to represent historic or future warming scenarios and be calibrated to individual streams using local measurements of stream temperature and slope. A set of reference equations and formulas are provided for application to most streams. Example calculations for streams with lapse rates of 0.8 °C/100 m and long‐term warming rates of 0.1–0.2 °C decade?1 indicate that isotherms shift upstream at 0.13–1.3 km decade?1 in steep streams (2–10% slope) and 1.3–25 km decade?1 in flat streams (0.1–1% slope). Used more generally with global scenarios, the equations predict isotherms shifted 1.5–43 km in many streams during the 20th Century as air temperatures increased by 0.6 °C and would shift another 5–143 km in the first half of the 21st Century if midrange projections of a 2 °C air temperature increase occur. Variability analysis suggests that short‐term variation associated with interannual stream temperature changes will mask long‐term isotherm shifts for several decades in most locations, so extended biological monitoring efforts are required to document anticipated distribution shifts. Resampling of historical sites could yield estimates of biological responses in the short term and should be prioritized to validate bioclimatic models and develop a better understanding about the effects of temperature increases on stream biotas.  相似文献   

13.
There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky–eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail''s body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail''s upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.  相似文献   

14.
Ecological Niche Models (ENMs) have different performances in predicting potential geographic distributions. Here we meta‐analyzed the likely effects of climate change on the potential geographic distribution of 1,205 bird species from the Neotropical region, modeled using eight ENMs and three Atmosphere‐Ocean General Circulation Models (AOGCM). We considered the variability in ENMs performance to estimate a weighted mean difference between potential geographic distributions for baseline and future climates. On average, potential future ranges were projected to be from 25.7% to 44.5% smaller than current potential ranges across species. However, we found that 0.2% to 18.3% of the total variance in range shifts occurred “within species” (i.e., owing to the use of different modeling techniques and climate models) and 81.7% to 99.8% remained between species (i.e., it could be explained by ecological correlates). Using meta‐analytical techniques akin to regression, we also showed that potential range shifts are barely predicted by bird biological traits. We demonstrated that one can combine and reduce species‐specific effects with high uncertainty in ENMs and also explore potential causes of climate change effect on species using meta‐analytical tools. We also highlight that the search for powerful correlates of climate change‐induced range shifts can be a promising line of investigation.  相似文献   

15.
The threat of excessive nutrient enrichment, or eutrophication, is intensifying across the globe as climate change progresses, presenting a major management challenge. Alterations in precipitation patterns and increases in temperature are increasing nutrient loadings in aquatic habitats and creating conditions that promote the proliferation of cyanobacterial blooms. The exacerbating effects of climate warming on eutrophication are well established, but we lack an in-depth understanding of how aquatic ectotherms respond to eutrophication and warming in tandem. Here, I provide a brief overview and critique of studies exploring the cumulative impacts of eutrophication and warming on aquatic ectotherms, and provide forward direction using mechanistically focused, multi-threat experiments to disentangle complex interactions. Evidence to date suggests that rapid warming will exacerbate the negative effects of eutrophication on aquatic ectotherms, but gradual warming will induce physiological remodelling that provides protection against nutrients and hypoxia. Moving forward, research will benefit from a greater focus on unveiling cause and effect mechanisms behind interactions and designing treatments that better mimic threat dynamics in nature. This approach will enable robust predictions of species responses to ongoing eutrophication and climate warming and enable the integration of climate warming into eutrophication management policies.  相似文献   

16.
羊草物候特征对气候因子的响应   总被引:16,自引:5,他引:16  
研究了内蒙古高原典型草原优势植物羊草的物候特征及其对气候因子的响应,结果表明,3~4月的平均温度与羊草的展叶显著相关,温度每升高1℃,羊草展叶提前4.35d;日照时数与羊草枯黄期显著相关,随着日照时数增加,羊草展叶期推后,枯黄期提前;4~10月平均风速与羊草生长季长相关,平均风速越大,生长期越长。  相似文献   

17.
Penguins are adapted to live in extreme environments, but they can be highly sensitive to climate change, which disrupts penguin life history strategies when it alters the weather, oceanography and critical habitats. For example, in the southwest Atlantic, the distributional range of the ice‐obligate emperor and Adélie penguins has shifted poleward and contracted, while the ice‐intolerant gentoo and chinstrap penguins have expanded their range southward. In the Southern Ocean, the El Niño‐Southern Oscillation and the Southern Annular Mode are the main modes of climate variability that drive changes in the marine ecosystem, ultimately affecting penguins. The interaction between these modes is complex and changes over time, so that penguin responses to climate change are expected to vary accordingly, complicating our understanding of their future population processes. Penguins have long life spans, which slow microevolution, and which is unlikely to increase their tolerance to rapid warming. Therefore, in order that penguins may continue to exploit their transformed ecological niche and maintain their current distributional ranges, they must possess adequate phenotypic plasticity. However, past species‐specific adaptations also constrain potential changes in phenology, and are unlikely to be adaptive for altered climatic conditions. Thus, the paleoecological record suggests that penguins are more likely to respond by dispersal rather than adaptation. Ecosystem changes are potentially most important at the borders of current geographic distributions, where penguins operate at the limits of their tolerance; species with low adaptability, particularly the ice‐obligates, may therefore be more affected by their need to disperse in response to climate and may struggle to colonize new habitats. While future sea‐ice contraction around Antarctica is likely to continue affecting the ice‐obligate penguins, understanding the responses of the ice‐intolerant penguins also depends on changes in climate mode periodicities and interactions, which to date remain difficult to reproduce in general circulation models.  相似文献   

18.
森林凋落物分解及其对全球气候变化的响应   总被引:17,自引:4,他引:17  
杨万勤  邓仁菊  张健 《应用生态学报》2007,18(12):2889-2895
凋落物分解是重要的森林生态系统过程之一,受到气候、凋落物质量、土壤生物群落等生物和非生物因素的综合调控.迄今,有关不同森林生态系统和不同树种地上部分的凋落物动态、凋落物分解过程中的养分释放动态、生物和非生物因素对凋落物分解的影响等研究报道较多,但对地下凋落物的分解研究相对较少.近年来,森林凋落物分解对以大气CO2浓度增加和温度升高为主要特征的全球变化的响应逐步受到重视,但其研究结果仍具有很多不确定性.因此,未来凋落物生态研究的重点应是凋落物分解对土壤有机碳固定的贡献、地上/地下凋落物的物理、化学和生物学过程及其对各种生态因子(例如冻融、干湿交替)及交互作用的响应、凋落物特别是地下凋落物分解对全球气候变化的响应机制等方面.  相似文献   

19.
Niu S  Wu M  Han Y  Xia J  Li L  Wan S 《The New phytologist》2008,177(1):209-219
Global warming and a changing precipitation regime could have a profound impact on ecosystem carbon fluxes, especially in arid and semiarid grasslands where water is limited. A field experiment manipulating temperature and precipitation has been conducted in a temperate steppe in northern China since 2005. A paired, nested experimental design was used, with increased precipitation as the primary factor and warming simulated by infrared radiators as the secondary factor. The results for the first 2 yr showed that gross ecosystem productivity (GEP) was higher than ecosystem respiration, leading to net C sink (measured by net ecosystem CO(2) exchange, NEE) over the growing season in the study site. The interannual variation of NEE resulted from the difference in mean annual precipitation. Experimental warming reduced GEP and NEE, whereas increased precipitation stimulated ecosystem C and water fluxes in both years. Increased precipitation also alleviated the negative effect of experimental warming on NEE. The results demonstrate that water availability plays a dominant role in regulating ecosystem C and water fluxes and their responses to climatic change in the temperate steppe of northern China.  相似文献   

20.
In highly seasonal environments, offspring production by vertebrates is timed to coincide with the annual peak of resource availability. For herbivores, this resource peak is represented by the annual onset and progression of the plant growth season. As plant phenology advances in response to climatic warming, there is potential for development of a mismatch between the peak of resource demands by reproducing herbivores and the peak of resource availability. For migratory herbivores, such as caribou, development of a trophic mismatch is particularly likely because the timing of their seasonal migration to summer ranges, where calves are born, is cued by changes in day length, while onset of the plant-growing season on the same ranges is cued by local temperatures. Using data collected since 1993 on timing of calving by caribou and timing of plant growth in West Greenland, we document the consequences for reproductive success of a developing trophic mismatch between caribou and their forage plants. As mean spring temperatures at our study site have risen by more than 4 degrees C, caribou have not kept pace with advancement of the plant-growing season on their calving range. As a consequence, offspring mortality has risen and offspring production has dropped fourfold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号