首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The majority of the skeletal muscle plasma membrane is internalized as part of the tubular (t-) system, forming a standing junction with the sarcoplasmic reticulum (SR) membrane throughout the muscle fiber. This arrangement facilitates not only a rapid and large release of Ca(2+) from the SR for contraction upon excitation of the fiber, but has also direct implications for other interdependent cellular regulators of Ca(2+). The t-system plasma membrane Ca-ATPase (PMCA) and store-operated Ca(2+) entry (SOCE) can also be activated upon release of SR Ca(2+). In muscle, the SR Ca(2+) sensor responsible for rapidly activated SOCE appears to be the stromal interacting molecule 1L (STIM1L) isoform of STIM1 protein, which directly interacts with the Orai1 Ca(2+) channel in the t-system. The common isoform of STIM1 is STIM1S, and it has been shown that STIM1 together with Orai1 in a complex with the partner protein of STIM (POST) reduces the activity of the PMCA. We have previously shown that Orai1 and STIM1 are upregulated in dystrophic mdx mouse muscle, and here we show that STIM1L and PMCA are also upregulated in mdx muscle. Moreover, we show that the ratios of STIM1L to STIM1S in wild-type (WT) and mdx muscle are not different. We also show a greater store-dependent Ca(2+) influx in mdx compared with WT muscle for similar levels of SR Ca(2+) release while normal activation and deactivation properties were maintained. Interestingly, the fiber-averaged ability of WT and mdx muscle to extrude Ca(2+) via PMCA was found to be the same despite differences in PMCA densities. This suggests that there is a close relationship among PMCA, STIM1L, STIM1S, Orai1, and also POST expression in mdx muscle to maintain the same Ca(2+) extrusion properties as in the WT muscle.  相似文献   

2.
3.
Duchenne muscular dystrophy (DMD) is a lethal inherited muscle disorder. Pathological characteristics of DMD skeletal muscles include, among others, abnormal Ca(2+) homeostasis and cell signalling. Here, in the mdx mouse model of DMD, we demonstrate significant P2X7 receptor abnormalities in isolated primary muscle cells and cell lines and in dystrophic muscles in vivo. P2X7 mRNA expression in dystrophic muscles was significantly up-regulated but without alterations of specific splice variant patterns. P2X7 protein was also up-regulated and this was associated with altered function of P2X7 receptors producing increased responsiveness of cytoplasmic Ca(2+) and extracellular signal-regulated kinase (ERK) phosphorylation to purinergic stimulation and altered sensitivity to NAD. Ca(2+) influx and ERK signalling were stimulated by ATP and BzATP, inhibited by specific P2X7 antagonists and insensitive to ivermectin, confirming P2X7 receptor involvement. Despite the presence of pannexin-1, prolonged P2X7 activation did not trigger cell permeabilization to propidium iodide or Lucifer yellow. In dystrophic mice, in vivo treatment with the P2X7 antagonist Coomassie Brilliant Blue reduced the number of degeneration-regeneration cycles in mdx skeletal muscles. Altered P2X7 expression and function is thus an important feature in dystrophic mdx muscle and treatments aiming to inhibit P2X7 receptor might slow the progression of this disease.  相似文献   

4.
Autophagy is an apoptosis-independent mechanism of cell death that protects the cell from environmental imbalances and infection by pathogens. We identified a novel small molecule, 2-(3-Benzyl-4-oxo-3,4,5,6,7,8-hexahydro-benzo[4,5]thieno[2,3-d]pyrimidin-2-ylsulfanylmethyl)-oxazole-4-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (referred as autophagonizer), using high-content cell-based screening and the autophagosome marker EGFP-LC3. Autophagonizer inhibited growth and induced cell death in the human tumor cell lines MCF7, HeLa, HCT116, A549, AGS, and HT1080 via a caspase-independent pathway. Conversion of cytosolic LC3-I to autophagosome-associated LC3-II was greatly enhanced by autophagonizer treatment. Transmission electron microscopy and acridine orange staining revealed increased autophagy in the cytoplasm of autophagonizer-treated cells. In conclusion, autophagonizer is a novel autophagy inducer with unique structure, which induces autophagic cell death in the human tumor cell lines.  相似文献   

5.
The precise mechanisms underlying skeletal muscle damage in Duchenne muscular dystrophy (DMD) remain ill-defined. Functional ischemia during muscle activation, with subsequent reperfusion during rest, has been documented. Therefore, one possibility is the presence of increased oxidative stress. We applied a model of acute hindlimb ischemia/reperfusion (I/R) in mdx mice (genetic homolog of DMD) to evaluate dynamic in vivo responses of dystrophic muscles to this form of oxidative stress. Before the application of I/R, mdx muscles showed: 1) decreased levels of total glutathione (GSH) with an increased oxidized (GSSG)-to-reduced (GSH) glutathione ratio; 2) greater activity of the GSH-metabolizing enzymes glutathione peroxidase (GPx) and glutathione reductase; and 3) lower activity levels of NADP-linked isocitrate dehydrogenase (ICDH) and aconitase, two metabolic enzymes that are sensitive to inactivation by oxidative stress and also implicated in GSH regeneration. Interestingly, nondystrophic muscles subjected to I/R exhibited similar changes in total glutathione, GSSG/GSH, GPx, ICDH, and aconitase. In contrast, all of the above remained stable in mdx muscles subjected to I/R. Taken together, these results suggest that mdx muscles are chronically subjected to increased oxidative stress, leading to adaptive changes that attempt to protect (although only in part) the dystrophic muscles from acute I/R-induced oxidative stress. In addition, mdx muscles show significant impairment of the redox-sensitive metabolic enzymes ICDH and aconitase, which may further contribute to contractile dysfunction in dystrophic muscles.  相似文献   

6.
Duchenne muscular dystrophy results from the lack of dystrophin, a cytoskeletal protein associated with the inner surface membrane, in skeletal muscle. The absence of dystrophin induces an abnormal increase of sarcolemmal calcium influx through cationic channels in adult skeletal muscle fibers from dystrophic (mdx) mice. We observed that the activity of these channels was increased after depletion of the stores of calcium with thapsigargin or caffeine. By analogy with the situation observed in nonexcitable cells, we therefore hypothesized that these store-operated channels could belong to the transient receptor potential channel (TRPC) family. We measured the expression of TRPC isoforms in normal and mdx adult skeletal muscles fibers, and among the seven known isoforms, five were detected (TRPC1, 2, 3, 4, and 6) by RT-PCR. Western blot analysis and immunocytochemistry of normal and mdx muscle fibers demonstrated the localization of TRPC1, 4, and 6 proteins at the plasma membrane. Therefore, an antisense strategy was used to repress these TRPC isoforms. In parallel with the repression of the TRPCs, we observed that the occurrence of calcium leak channels was decreased to one tenth of its control value (patch-clamp technique), showing the involvement of TRPC in the abnormal calcium influx observed in dystrophic fibers.  相似文献   

7.
Small molecules have played an important role in delineating molecular pathways involved in embryonic development and disease pathology. The need for novel small molecule modulators of biological processes has driven a number of targeted screens on large diverse libraries. However, due to the specific focus of such screens, the majority of the bioactive potential of these libraries remains unharnessed. In order to identify a higher proportion of compounds with interesting biological activities, we screened a diverse synthetic library for compounds that perturb the development of any of the multiple organs in zebrafish embryos. We identified small molecules that affect the development of a variety of structures such as heart, vasculature, brain, and body-axis. We utilized the previously known role of retinoic acid in anterior-posterior (A-P) patterning to identify the target of DTAB, a compound that caused A-P axis shortening in the zebrafish embryo. We show that DTAB is a retinoid with selective activity towards retinoic acid receptors gamma and beta. Thus, conducting zebrafish developmental screens using small molecules will not only enable the identification of compounds with diverse biological activities in a large chemical library but may also facilitate the identification of the target pathways of these biologically active molecules.  相似文献   

8.
We demonstrated that the susceptibility of skeletal muscle to injury from lengthening contractions in the dystrophin-deficient mdx mouse is directly linked with the extent of fiber branching within the muscles and that both parameters increase as the mdx animal ages. We subjected isolated extensor digitorum longus muscles to a lengthening contraction protocol of 15% strain and measured the resulting drop in force production (force deficit). We also examined the morphology of individual muscle fibers. In mdx mice 1–2 mo of age, 17% of muscle fibers were branched, and the force deficit of 7% was not significantly different from that of age-matched littermate controls. In mdx mice 6–7 mo of age, 89% of muscle fibers were branched, and the force deficit of 58% was significantly higher than the 25% force deficit of age-matched littermate controls. These data demonstrated an association between the extent of branching and the greater vulnerability to contraction-induced injury in the older fast-twitch dystrophic muscle. Our findings demonstrate that fiber branching may play a role in the pathogenesis of muscular dystrophy in mdx mice, and this could affect the interpretation of previous studies involving lengthening contractions in this animal. skeletal muscle; mdx mouse; lengthening contraction; Duchenne muscular dystrophy  相似文献   

9.
To determine whether muscle satellite cells and utrophin are correlated with the degree of damage in mdx skeletal muscles, we measured the area of the degenerative region as an indicator of myofiber degeneration in the masseter, gastrocnemius, soleus, and diaphragm muscles of mdx mice. Furthermore, we analyzed the expression levels of the paired box homeotic gene 7 (pax7), m-cadherin (the makers of muscle satellite cells), and utrophin mRNA. We also investigated the immunolocalization of m-cadherin and utrophin proteins in the muscles of normal C57BL/10J (B10) and mdx mice. The expression level of pax7 mRNA and the percentage of m-cadherin-positive cells among the total number of cell nuclei in the muscle tissues in all four muscles studied were greater in the mdx mice than in the B10 mice. However, there was no significant correlation between muscle damage and expression level for pax7 mRNA (R = –0.140), nor was there a correlation between muscle damage and the percentage of satellite cells among the total number of cell nuclei (R = –0.411) in the mdx mice. The expression level of utrophin mRNA and the intensity of immunostaining for utrophin in all four muscles studied were greater in the mdx mice than in the B10 mice. However, there also was not a significant correlation between muscle damage and expression level of utrophin mRNA (R = 0.231) in the mdx mice, although upregulated utrophin was incorporated into the sarcolemma. These results suggest that satellite cells and utrophin are not directly correlated with the degree of skeletal muscle damage in mdx mice. dystrophy; pax7; m-cadherin; dystrophin-related proteins  相似文献   

10.
11.
The apelinergic system includes a series of endogenous peptides apelin, ELABELA/TODDLER and their 7-transmembrane G-protein coupled apelin receptor (APJ, AGTRL-1, APLNR). The APJ receptor is an attractive therapeutic target because of its involvement in cardiovascular diseases and potentially other disorders including liver fibrosis, obesity, diabetes, and neuroprotection. To date, pharmacological characterization of the APJ receptor has been limited due to the lack of small molecule functional agonists or antagonists. Through focused screening we identified a drug-like small molecule agonist hit 1 with a functional EC50 value of 21.5 ± 5 μM and binding affinity (Ki) of 5.2 ± 0.5 μM. Initial structure–activity studies afforded compound 22 having a 27-fold enhancement in potency and the first sub-micromolar full agonist with an EC50 value of 800 ± 0.1 nM and Ki of 1.3 ± 0.3 μM. Preliminary SAR, synthetic methodology, and in vitro pharmacological characterization indicate this scaffold will serve as a favorable starting point for further refinement of APJ potency and selectivity.
  1. Download : Download full-size image
  相似文献   

12.
13.
14.
Transmissible spongiform encephalopathies (TSEs) may be acquired peripherally, in which case infectivity usually accumulates in lymphoid tissues before dissemination to the nervous system. Studies of mouse scrapie models have shown that mature follicular dendritic cells (FDCs), expressing the host prion protein (PrP(c)), are critical for replication of infection in lymphoid tissues and subsequent neuroinvasion. Since FDCs require lymphotoxin signals from B lymphocytes to maintain their differentiated state, blockade of this stimulation with a lymphotoxin beta receptor-immunoglobulin fusion protein (LT beta R-Ig) leads to their temporary dedifferentiation. Here, a single treatment with LT beta R-Ig before intraperitoneal scrapie inoculation blocked the early accumulation of infectivity and disease-specific PrP (PrP(Sc)) within the spleen and substantially reduced disease susceptibility. These effects coincided with an absence of FDCs in the spleen for ca. 28 days after treatment. Although the period of FDC dedifferentiation was extended to at least 49 days by consecutive LT beta R-Ig treatments, this had little added protective benefit after injection with a moderate dose of scrapie. We also demonstrate that mature FDCs are critical for the transmission of scrapie from the gastrointestinal tract. Treatment with LT beta R-Ig before oral scrapie inoculation blocked PrP(Sc) accumulation in Peyer's patches and mesenteric lymph nodes and prevented neuroinvasion. However, treatment 14 days after oral inoculation did not affect survival time or susceptibility, suggesting that infectivity may have already spread to the peripheral nervous system. Although manipulation of FDCs may offer a potential approach for early intervention in peripherally acquired TSEs, these data suggest that the duration of the treatment window may vary widely depending on the route of exposure.  相似文献   

15.
16.
MICAL, a novel CasL interacting molecule, associates with vimentin   总被引:1,自引:0,他引:1  
CasL/HEF1 belongs to the p130(Cas) family. It is tyrosine-phosphorylated following beta(1) integrin and/or T cell receptor stimulation and is thus considered to be important for immunological reactions. CasL has several structural motifs such as an SH3 domain and a substrate domain and interacts with many molecules through these motifs. To obtain more insights on the CasL-mediated signal transduction, we sought proteins that interact with the CasL SH3 domain by far Western screening, and we identified a novel human molecule, MICAL (a Molecule Interacting with CasL). MICAL is a protein of 118 kDa and is expressed in the thymus, lung, spleen, kidney, testis, and hematopoietic cells. MICAL has a calponin homology domain, a LIM domain, a putative leucine zipper motif, and a proline-rich PPKPP sequence. MICAL associates with CasL through this PPKPP sequence. MICAL is a cytoplasmic protein and colocalizes with CasL at the perinuclear area. Through the COOH-terminal region, MICAL also associates with vimentin that is a major component of intermediate filaments. Immunostaining revealed that MICAL localizes along with vimentin intermediate filaments. These results suggest that MICAL may be a cytoskeletal regulator that connects CasL to intermediate filaments.  相似文献   

17.
Bone marrow (BM) transplantation in mice suggests the existence of pluripotent cells able to differentiate into skeletal muscle tissue, although sustained myofiber reconstitution has not yet been achieved. We investigated the myogenic potential of mouse BM cells and evaluated whether a BM fraction enriched for cells expressing skeletal muscle markers would ameliorate muscle repair, when compared to whole BM, into the dystrophic mdx mouse. We demonstrate that cells expressing striated-muscle-specific proteins are already present in the BM independently from experimentally forced myogenic conversion. We observed the presence of both markers of early myogenic program such as Pax3, Myf5, MyoD, desmin, and late myogenesis such as myosin heavy chain and alpha-sarcomeric actin. These myogenic cells are more represented in the early nonadherent BM fraction, which generates clones able to fully differentiate into myotubes. Transplantation in mdx mice by intravenous injection of whole BM and a tenfold BM myogenic enriched fraction resulted in BM reconstitution and limited dystrophin restoration. Taken together, these data show that a fraction of BM cells have a definite potential for differentiation along the skeletal muscle pathway and can be recruited by muscle repair mechanisms. They also indicate that factors limiting the degree of muscle recruitment and the host stem cell competition should be assessed in order to evaluate the usefulness of BM-derived myogenic cells into the context of cell-mediated gene therapy of inherited muscle diseases.  相似文献   

18.
There is now considerable experimental evidence that aberrant activation of Rho family small GTPases promotes the uncontrolled proliferation, invasion, and metastatic properties of human cancer cells. Therefore, there is considerable interest in the development of small molecule inhibitors of Rho GTPase function. However, to date, most efforts have focused on inhibitors that indirectly block Rho GTPase function, by targeting either enzymes involved in post-translational processing or downstream protein kinase effectors. We recently determined that the EHT 1864 small molecule can inhibit Rac function in vivo. In this study, we evaluated the biological and biochemical specificities and biochemical mechanism of action of EHT 1864. We determined that EHT 1864 specifically inhibited Rac1-dependent platelet-derived growth factor-induced lamellipodia formation. Furthermore, our biochemical analyses with recombinant Rac proteins found that EHT 1864 possesses high affinity binding to Rac1, as well as the related Rac1b, Rac2, and Rac3 isoforms, and this association promoted the loss of bound nucleotide, inhibiting both guanine nucleotide association and Tiam1 Rac guanine nucleotide exchange factor-stimulated exchange factor activity in vitro. EHT 1864 therefore places Rac in an inert and inactive state, preventing its engagement with downstream effectors. Finally, we evaluated the ability of EHT 1864 to block Rac-dependent growth transformation, and we determined that EHT 1864 potently blocked transformation caused by constitutively activated Rac1, as well as Rac-dependent transformation caused by Tiam1 or Ras. Taken together, our results suggest that EHT 1864 selectively inhibits Rac downstream signaling and transformation by a novel mechanism involving guanine nucleotide displacement.  相似文献   

19.
Acute ischemic stroke is a major risk for morbidity and mortality in our aging population. Currently only one drug, the thrombolytic tissue plasminogen activator, is approved by the US Food and Drug Administration to treat stroke. Therefore, there is a need to develop new drugs that promote neuronal survival following stroke. We have synthesized a novel neuroprotective molecule called CNB-001 (a pyrazole derivative of curcumin) that has neurotrophic activity, enhances memory, and blocks cell death in multiple toxicity assays related to ischemic stroke. In this study, we tested the efficacy of CNB-001 in a rigorous rabbit ischemic stroke model and determined the molecular basis of its in vivo activity. CNB-001 has substantial beneficial properties in an in vitro ischemia assay and improves the behavioral outcome of rabbit ischemic stroke even when administered 1?h after the insult, a therapeutic window in this model comparable to tissue plasminogen activator. In addition, we elucidated the protein kinase pathways involved in neuroprotection. CNB-001 maintains the calcium-calmodulin-dependent kinase signaling pathways associated with neurotrophic growth factors that are critical for the maintenance of neuronal function. On the basis of its in vivo efficacy and novel mode of action, we conclude that CNB-001 has a great potential for the treatment of ischemic stroke as well as other CNS pathologies.  相似文献   

20.
In Duchenne muscular dystrophy (DMD) and in the mdx mouse model of DMD, the lack of dystrophin is related to enhanced calcium influx and muscle degeneration. Stretch-activated channels (SACs) might be directly involved in the pathology of DMD, and transient receptor potential cation channels have been proposed as likely candidates of SACs. We investigated the levels of transient receptor potential canonical channel 1 (TRPC1) and the effects of streptomycin, a SAC blocker, in muscles showing different degrees of the dystrophic phenotype. Mdx mice (18 days old, n = 16) received daily intraperitoneal injections of streptomycin (182 mg/kg body wt) for 18 days, followed by removal of the diaphragm, sternomastoid (STN), biceps brachii, and tibialis anterior muscles. Control mdx mice (n = 37) were injected with saline. Western blot analysis showed higher levels of TRPC1 in diaphragm muscle compared with STN and limb muscles. Streptomycin reduced creatine kinase and prevented exercise-induced increases of total calcium and Evans blue dye uptake in diaphragm and in STN muscles. It is suggested that different levels of the stretch-activated calcium channel protein TRPC1 may contribute to the different degrees of the dystrophic phenotype seen in mdx mice. Early treatment designed to regulate the activity of these channels may ameliorate the progression of dystrophy in the most affected muscle, the diaphragm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号