首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Recognition of the importance of glial cells in nervous system functioning is increasing, specifically regarding the modulation of neural activity. This brief review focuses on some of the morphological and functional interactions that take place between astroglia and neurons. Astrocyte-neuron interactions are of special interest because this glia cell type has intimate and dynamic associations with all parts of neurons, i.e., somata, dendrites, axons, and terminals. Activation of certain receptors on astrocytes produces morphological changes that result in new contacts between neurons, along with physiological and functional changes brought about by the new contacts. In response to activation of other receptors or changes in the extracellular microenvironment, astrocytes release neuroactive substances that directly excite or inhibit nearby neurons and may modulate synaptic transmission. Although some of these glial-neuronal interactions have been known for many years, others have been quite recently revealed, but together they are forming a compelling story of how these two major cell types in the brain carry out the complex tasks that mammalian nervous systems perform.  相似文献   

4.
Colistin interactions with the mammalian urothelium   总被引:4,自引:0,他引:4  
Here we describe the effect of colistin on the barrier function of the mammalian urinary bladder epithelium. Addition of colistin to the mucosal solution of the rabbit urinary bladder epithelium (urothelium) resulted in an increase in the transepithelial conductance. The magnitude of the increase in transepithelial conductance was dependent on the membrane voltage, concentration of colistin, and presence of divalent cations in the bath solution. The initial site of action of colistin was at the apical membrane. Colistin increased the membrane conductance only when the apical membrane potential was cell interior negative. The more negative the membrane potential, the larger the conductance increase. The concentration dependence of the conductance increase saturated, suggesting a membrane binding site. Divalent cations decreased the magnitude of the conductance increase. This divalent cation action occurred at two sites: one in competition with colistin for a membrane binding site, and the other by rapidly blocking the induced conductance. At short exposure times, the increase in conductance was reversed by either removing colistin from the bath or changing the voltage so that the apical membrane was cell interior positive. At long exposure times, the increase was only partially reversible by voltage or removal from the bath. This finding suggests that at long exposure times, there is a toxic effect of colistin on the urothelium. bladder epithelium; epithelial transport; tight junctions; antibiotics; cationic proteins  相似文献   

5.
哺乳动物胚胎的早期发育,可依据环境变化进行自我调控。胚胎是何时具有自我调控能力的,一直有两种说法:其一,胚胎刚形成时,细胞质成分空间分布均衡,胚胎具有发育全能性,经几次卵裂后,卵裂球间开始分化发育,另外一种观点认为,胚胎形成时就具有极性,具备了分化发育的特异性,随着不断卵裂、细胞质的分离,这种发育差异表现得更加明显。近年的研究多倾向于第二种观点,认为卵裂的顺序及方位,对着床前胚胎的极性发育有影响。  相似文献   

6.
7.
In the past decade, striking advances have been made in the field of gene introducing/disrupting technology including generation of transgenic and knockout mice, which have enabled us to elucidate roles of specific genes in development. In this technology, embryos introduced with exogenous genes or chimeric embryos aggregated/injected with embryonic stem (ES) cells carrying targeted genes are allowed to develop in the uterus of foster mothers. The uterus, however, is like a black box for researchers investigating postimplantation development of mammalian embryos. Embryo culture is one of the powerful techniques that can open this black box. In this review, we focus on the applicable aspects of the whole embryo culture in the study of mammalian development and discuss the future possibilities of this technique.  相似文献   

8.
9.
The stereotyped pattern of cell commitments during leech embryogenesis is described. The nature of cell commitments during segmentation differs significantly between leech and fruit fly. Despite the constancy of cell fate assignments in normal development, ablation experiments show that cell interactions are essential in setting some of these commitments. Interacting cells follow a positionally determined hierarchy of fate choices. For other cells, which appear to have fates fixed from birth, the possibility of determinative interactions between mother and daughter cells is discussed.  相似文献   

10.
Differentiation in the early mouse embryo begins at the 8-cell stage when the blastomeres flatten against each other by active spreading movements and surface and cytoplasmic elements become concentrated in the apical (uncontacted) region of the cells. A ring of cortical myosin marks the demarcation between the contacted and the uncontacted cellular domains. The organization of the cortical contractile apparatus in the blastomeres bears a formal resemblance to that of other cells that are engaged in similar motile activities. It has been proposed that a flow of cortical filaments could provide the motor that powers these movements. The applicability of such a cortical flow model to the early embryo and the implications for cell flattening and cell polarization are discussed in this review.  相似文献   

11.
Early mammalian development is regulative - it is flexible and responsive to experimental intervention. This flexibility could be explained if embryogenesis were originally completely unbiased and disordered; order and determination of cells only arising later. Alternatively, regulative behaviour could be consistent with the embryo having some order or bias from the very beginning, with inflexibility and cell determination increasing steadily over time. Recent evidence supports the second view and indicates that the sequence and the orientations of cell divisions help to build the first asymmetries.  相似文献   

12.
13.
The vascular endothelium is best known for its role in oxygen and nutrient delivery to the various tissues. Growing evidence supports a far more complex role in tissue homeostasis. In particular, reciprocal interactions between endothelial cells and the local microenvironment may regulate organ development and pattern formation. Such interactions appear to be important also in the adult, in normal and pathological conditions.  相似文献   

14.
15.
16.
The morula‐stage embryo of the polyembryonic egg‐larval parasitoid Copidosoma floridanum forms outside the host embryo and secondarily invades the host body. Electron microscopic analyses of cellular interactions between the extraembryonic syncytium of the parasitic morula and the host embryonic epithelial cells showed that morula penetration into the host embryo did not cause obvious damage to the host cells, except for the abrasion of the embryonic cuticle. Epithelial cells of the host embryo extended microvilli toward the invading C. floridanum morula and also adjacent host cells in the same way. Shortly after settlement of the morula within the host body cavity, gap junctions and adherens junctions with host cells were formed. The morula was then surrounded by a cyst comprised of host cells into which host tracheoles were invaginated. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
哺乳动物早期胚胎端粒和端粒酶重编程   总被引:1,自引:0,他引:1  
端粒位于真核染色体末端,是稳定染色体末端的重要元件。端粒酶(TER)是一种特殊的细胞核糖核蛋白(RNP)反转录酶(RT),其核心酶包括蛋白亚基和RNA元件。在DNA复制过程中的端粒丢失可以被有活性的端粒酶修复回来。哺乳动物端粒酶在发育中受调控,端粒的重编程可能是由于早期胚胎不同时期的端粒酶活性而造成的。因此,研究端粒和端粒酶重编程在早期胚胎发育中是非常重要的。该文综述了端粒和端粒酶的结构和功能,及其与哺乳动物早期胚胎发育的关系,并在此基础上展望了端粒和端粒酶在克隆动物胚胎发育的基础研究。  相似文献   

20.
Comment on: Chagpar RB, et al. Proc Natl Acad Sci USA 2010; 107:5471-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号