共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacteria of the genus Wolbachia are among the most common endosymbionts in the world. In many insect species these bacteria induce a sperm-egg incompatibility between the gametes of infected males and uninfected females, commonly called unidirectional cytoplasmic incompatibility (CI). It is generally believed that unidirectional CI cannot promote speciation in hosts because infection differences between populations will be unstable and subsequent gene flow will eliminate genetic differences between diverging populations. In the present study we investigate this question theoretically in a mainland-island model with migration from mainland to island. Our analysis shows that (a) the infection polymorphism is stable below a critical migration rate, (b) an (initially) uninfected "island" can better maintain divergence at a selected locus (e.g. can adapt locally) in the presence of CI, and (c) unidirectional CI selects for premating isolation in (initially) uninfected island populations if they receive migration from a Wolbachia-infected mainland. Interestingly, premating isolation is most likely to evolve if levels of incompatibility are intermediate and if either the infection causes fecundity reductions or Wolbachia transmission is incomplete. This is because under these circumstances an infection pattern with an infected mainland and a mostly uninfected island can persist in the face of comparably high migration. We present analytical results for all three findings: (a) a lower estimation of the critical migration rate in the presence of local adaptation, (b) an analytical approximation for the gene flow reduction caused by unidirectional CI, and (c) a heuristic formula describing the invasion success of mutants at a mate preference locus. These findings generally suggest that Wolbachia-induced unidirectional CI can be a factor in divergence and speciation of hosts. 相似文献
2.
Background
In California Drosophila simulans, the maternally inherited Riverside strain Wolbachia infection (wRi) provides a paradigm for rapid spread of Wolbachia in nature and rapid evolutionary change. wRi induces cytoplasmic incompatibility (CI), where crosses between infected males and uninfected females produce reduced egg-hatch. The three parameters governing wRi infection-frequency dynamics quantify: the fidelity of maternal transmission, the level of cytoplasmic incompatibility, and the relative fecundity of infected females. We last estimated these parameters in nature in 1993. Here we provide new estimates, under both field and laboratory conditions. Five years ago, we found that wRi had apparently evolved over 15 years to enhance the fecundity of infected females; here we examine whether CI intensity has also evolved.Methodology/Principal Findings
New estimates using wild-caught flies indicate that the three key parameters have remained relatively stable since the early 1990s. As predicted by our three-parameter model using field-estimated parameter values, population infection frequencies remain about 93%. Despite this relative stability, laboratory data based on reciprocal crosses and introgression suggest that wRi may have evolved to produce less intense CI (i.e., higher egg hatch from incompatible crosses). In contrast, we find no evidence that D. simulans has evolved to lower the susceptibility of uninfected females to CI.Conclusions/Significance
Evolution of wRi that reduces CI is consistent with counterintuitive theoretical predictions that within-population selection on CI-causing Wolbachia does not act to increase CI. Within taxa, CI is likely to evolve mainly via pleiotropic effects associated with the primary targets of selection on Wolbachia, i.e., host fecundity and transmission fidelity. Despite continuous, strong selection, D. simulans has not evolved appreciably to suppress CI. Our data demonstrate a lack of standing genetic variation for CI resistance in the host. 相似文献3.
Wolbachia pipientis is an obligate bacterial endosymbiont, which has successfully invaded approximately 20% of all insect species by manipulating their normal developmental patterns. Wolbachia-induced phenotypes include parthenogenesis, male killing, and, most notably, cytoplasmic incompatibility. In the future these phenotypes might be useful in controlling or modifying insect populations but this will depend on our understanding of the basic molecular processes underlying insect fertilization and development. Wolbachia-infected Drosophila simulans express high levels of cytoplasmic incompatibility in which the sperm nucleus is modified and does not form a normal male pronucleus when fertilizing eggs from uninfected females. The sperm modification is somehow rescued in eggs infected with the same strain of Wolbachia. Thus, D. simulans has become an excellent model organism for investigating the manner in which endosymbionts can alter reproductive programs in insect hosts. This paper reviews the current knowledge of Drosophila early development and particularly sperm function. Developmental mutations in Drosophila that are known to affect sperm function will also be discussed.incompatibility. 相似文献
4.
Presgraves DC 《Genetics》2000,154(2):771-776
Cytoplasmic bacteria of the genus Wolbachia are best known as the cause of cytoplasmic incompatibility (CI): many uninfected eggs fertilized by Wolbachia-modified sperm from infected males die as embryos. In contrast, eggs of infected females rescue modified sperm and develop normally. Although Wolbachia cause CI in at least five insect orders, the mechanism of CI remains poorly understood. Here I test whether the target of Wolbachia-induced sperm modification is the male pronucleus (e.g., DNA or pronuclear proteins) or some extranuclear factor from the sperm required for embryonic development (e.g., the paternal centrosome). I distinguish between these hypotheses by crossing gynogenetic Drosophila melanogaster females to infected males. Gynogenetic females produce diploid eggs whose normal development requires no male pronucleus but still depends on extranuclear paternal factors. I show that when gynogenetic females are crossed to infected males, uniparental progeny with maternally derived chromosomes result. This finding shows that Wolbachia impair the male pronucleus but no extranuclear component of the sperm. 相似文献
5.
Background
Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI). CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown.Methodology/Principal Findings
Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI.Conclusions/Significance
Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role Hira plays in the interaction of Wolbachia and its insect host. 相似文献6.
Wolbachia are intracellular, maternally inherited bacteria that are widespread among arthropods and commonly induce a reproductive incompatibility between infected male and uninfected female hosts known as unidirectional cytoplasmic incompatibility (CI). If infected and uninfected populations occur parapatrically, CI acts as a post-zygotic isolation barrier. We investigate the stability of such infection polymorphisms in a mathematical model with two populations linked by migration. We determine critical migration rates below which infected and uninfected populations can coexist. Analytical solutions of the critical migration rate are presented for mainland-island models. These serve as lower estimations for a more general model with two-way migration. The critical migration rate is positive if either Wolbachia causes a fecundity reduction in infected female hosts or its transmission is incomplete, and is highest for intermediate levels of CI. We discuss our results with respect to local adaptations of the Wolbachia host, speciation, and pest control. 相似文献
7.
A genetic test of the role of the maternal pronucleus in Wolbachia-induced cytoplasmic incompatibility in Drosophila melanogaster
下载免费PDF全文

Cytoplasmic incompatibility (CI) is a reproductive sterility found in arthropods that is caused by the endoparasitic bacteria Wolbachia. In CI, host progeny fail to develop during early embryogenesis if Wolbachia-infected males fertilize uninfected females. It is widely accepted that this lethality is caused by some unknown Wolbachia-induced modification of the paternal nuclear material in the host testes. However, the direct means by which this modification leads to early embryonic death are currently unresolved. Results from previous studies suggested that CI lethality occurs as a result of asynchrony in cell cycle timing between the paternal and maternal pronuclei. This hypothesis can be tested experimentally by the prediction that the Wolbachia-modified paternal pronucleus should support androgenetic development (i.e., from the paternal pronucleus only). Using specific mutations in Drosophila melanogaster that produce androgenetic progeny, we demonstrate that the Wolbachia-induced modification inhibits this type of development. This result suggests that CI occurs independently of the maternal pronucleus and argues against pronuclear asynchrony as the primary cause of CI lethality. We propose that CI occurs instead as the result of either a developmentally incompetent paternal pronucleus or asynchrony between the paternal pronucleus and the cell cycle of the egg cytoplasm. 相似文献
8.
Dobson SL Fox CW Jiggins FM 《Proceedings. Biological sciences / The Royal Society》2002,269(1490):437-445
Obligate, intracellular bacteria of the genus Wolbachia often behave as reproductive parasites by manipulating host reproduction to enhance their vertical transmission. One of these reproductive manipulations, cytoplasmic incompatibility, causes a reduction in egg-hatch rate in crosses between individuals with differing infections. Applied strategies based upon cytoplasmic incompatibility have been proposed for both the suppression and replacement of host populations. As Wolbachia infections occur within a broad range of invertebrates, these strategies are potentially applicable to a variety of medically and economically important insects. Here, we examine the interaction between Wolbachia infection frequency and host population size. We use a model to describe natural invasions of Wolbachia infections, artificial releases of infected hosts and releases of sterile males, as part of a traditional sterile insect technique programme. Model simulations demonstrate the importance of understanding the reproductive rate and intraspecific competition type of the targeted population, showing that releases of sterile or incompatible individuals may cause an undesired increase in the adult number. In addition, the model suggests a novel applied strategy that employs Wolbachia infections to suppress host populations. Releases of Wolbachia-infected hosts can be used to sustain artificially an unstable coexistence of multiple incompatible infections within a host population, allowing the host population size to be reduced, maintained at low levels, or eliminated. 相似文献
9.
Poinsot D Charlat S Merçot H 《BioEssays : news and reviews in molecular, cellular and developmental biology》2003,25(3):259-265
The endocellular bacterium Wolbachia manipulates the reproduction of its arthropod hosts for its own benefit by various means, the most widespread being cytoplasmic incompatibility (CI). To date, the molecular mechanism involved in CI has not been elucidated. We examine here three different CI models described in previous literature, namely, the "lock-and-key", "titration-restitution" and "slow-motion" models. We confront them with the full range of CI patterns discovered so far, including the most complex ones such as multiple infections, asymmetrical and partial compatibility relationships and the existence of Wolbachia variants that can rescue the host from CI but not induce it. We conclude that the lock-and-key model is the most parsimonious of the models and fits the observations best. The two other models cannot be categorically invalidated, but they encounter some difficulties that make additional hypotheses necessary. 相似文献
10.
Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster 总被引:1,自引:0,他引:1
Cytoplasmic incompatibility (CI) is the most widespread reproductive modification induced in insects by the maternally inherited intracellular bacteria, Wolbachia. Expression of CI in Drosophila melanogaster is quite variable. Published papers typically show that CI expression is weak and often varies between different Drosophila lines and different labs reporting the results. The basis for this variability is not well understood but is often considered to be due to unspecified host genotype interactions with Wolbachia. Here, we show that male development time can greatly influence CI expression in D. melanogaster. In a given family, males that develop fastest express very strong CI. The "younger brothers" of these males (males that take longer to undergo larval development) quickly lose their ability to express the CI phenotype as a function of development time. This effect is independent of male age effects and is enhanced when flies are reared under crowded conditions. No correlation is seen between this effect and Wolbachia densities in testes, suggesting that a more subtle interaction between host and symbiont is responsible. The observed younger brother effect may explain much of the reported variability in CI expression in this species. When male development time is controlled, it is possible to obtain consistently high levels of CI expression, which will benefit future studies that wish to use D. melanogaster as a model host to unravel CI mechanisms. 相似文献
11.
Sinkins SP 《Insect biochemistry and molecular biology》2004,34(7):723-729
Wolbachia are maternally inherited bacteria that induce cytoplasmic incompatibility in mosquitoes, and are able to use these patterns of sterility to spread themselves through populations. For this reason they have been proposed as a gene drive system for mosquito genetic replacement, as well as for the reduction of population size or for modulating population age structure in order to reduce disease transmission. Here, recent progress in the study of mosquito Wolbachia is reviewed. We now have much more comprehensive estimates of the parameters that can affect the spread of Wolbachia through natural populations from low starting frequencies, and for waves of spread to be maintained in the face of partial barriers to gene flow. In Aedes albopictus these dynamics are extremely favourable, with very high maternal transmission fidelity and levels of incompatibility recorded. Correspondence between measurements taken in the lab and field is much better than in the Drosophila simulans model system. Important research goals are also discussed, including Wolbachia transformation, interspecific transfer and the elucidation of the mechanisms of incompatibility and rescue; all will be aided by a wealth of new Wolbachia genome information. 相似文献
12.
Vegetative incompatibility and cytoplasmic infection in fungi 总被引:12,自引:0,他引:12
C E Caten 《Journal of general microbiology》1972,72(2):221-229
13.
Most cases of Wolbachia infection so far documented in haplodiploid Hymenoptera are associated with parthenogenesis induction. Only three examples of Wolbachia-mediated cytoplasmic incompatibility (CI) have been reported, resulting either in haploidisation of fertilised eggs, which develop into viable males, or in their death. To better document this variability, we studied two new Wolbachia-wasp associations involving Drosophila parasitoids. In Trichopria cf. drosophilae, individuals are infected by two different Wolbachia variants, populations are nearly totally infected, and Wolbachia induces incomplete CI resulting in death of the fertilised eggs. On the other hand, Pachycrepoideus dubius harbours only one bacterial variant, populations are polymorphic for infection, and Wolbachia has no detectable effect. These two cases show that the range of variation in Wolbachia's effects in Hymenoptera is as wide as in diploids, extending from complete CI to an undetectable effect. Cases so far studied show some parallel between the strength of incompatibility, the number of Wolbachia variants infecting each wasp, and the natural infection frequency. These empirical data support theoretical models predicting evolution of CI towards lower levels, resulting in the decline and ultimate loss of infection, and place multiple infections as being an important factor in the evolution of host-Wolbachia associations. 相似文献
14.
Cross-matings were conducted among eastern, western, and Egyptian alfalfa weevil strains. Fully viable progenies were produced in reciprocal crosses between eastern and Egyptian weevils. The cross between western males and females of eastern or Egyptian strains was incompatible, producing infertile eggs, while the reciprocal cross yielded viable progeny but with a distorted sex ratio, predominantly female. The cause of incompatibility is due to the presence in the western weevil of a rickettsia, which is transmitted through the female parent. Of eight weevil populations surveyed, only the western weevil and a weevil population from the Netherlands harbored the rickettsiae. We conclude that all alfalfa weevil populations in the United States belong to the same species, Hypera postica (Gyllenhal), and that they are potentially interbreeding populations.
Résumé Des croisements ont été effectués entre 3 lignées d'H. postica et H. brunneipennis. Des descendants totalement viables ont été obtenus par croisements réciproques entre H. postica de Beltsville et H. brunneipennis. Les croisements entre mâles de H. postica de Logan et femelles de H. postica de Beltsville ou de H. brunneipennis ont été incompatibles, produisant des oeufs stériles, tandis que les croisements réciproques donnaient une descendance viable, mais avec un taux sexuel modifié avec prédominance de femelles. La cause de l'incompatibilité est due à la présence d'une rickettsia dans les H. postica de Logan, transmise par la femelle. Des 8 populations examinées, seule celle de Logan et 1 des pays Bas hébergeaient des rickettsia. Nous en concluons que toutes les populations des USA appartiennent à H. postica Gyllenhal, et qu'elles sont toutes potentiellement interfécondes.相似文献
15.
16.
Ferrari T. E. Wallace D. H. 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1977,50(5):211-225
Summary Recent biochemical studies with Brassica indicate that the pollen grain has a primary role in the control of self incompatibility. Combining this new evidence with that from prior genetic, biochemical, and ultrastructural studies, a working model is hypothesized for the molecular events which occur during self recognition and the subsequent control of pollen germination. Self recognition is postulated to involve the interaction of a presynthesized, genotype-specific recognition molecule (effector) produced by the stigma with a presynthesized receptor molecule produced by and located in or on the pollen grain. The consequence of self recognition is a selective inhibition of pollen protein synthesis within about 2–4 minutes after imbibition. We deduced that protein synthesis is programmed to occur in pollen — unless interrupted as a consequence of self-recognition — and leads to the sequential production of opposing regulators: first a germination inhibitor (G-Inh), then a germination activator (G-Act). These regulators in turn control the activities of presynthesized, and probably sequestered enzymes required for germ tube formation. Sequential appearances of the G-Inh and G-Act occur unless synthesis of the G-Act is blocked as a result of self recognition. Thus, following a self pollination, recognition occurs in sufficient time to block production of the G-Act but not of the G-Inh, and inhibition of germination (incompatibility) results. For a cross pollination, there is no self recognition and production of the G-Act is unimpeded; it then nullifies the effect of the G-Inh and pollen germination (compatibility) results. The model and evidence for its support are discussed in detail.Department of Vegetable Crops Paper No. 719 相似文献
17.
A rapid method for determining plasmid incompatibility group by agarose gel electrophoresis is described. This procedure requires only 4 or 5 days and is especially useful when it is not possible to distinguish two plasmids in the same cell by their antibiotic resistance patterns. 相似文献
18.
J Riis-Vestergaard 《Journal of biochemical and biophysical methods》1983,7(4):285-291
The diffusion coefficients of radioactively labelled substances in cytoplasm or other fluids are determined in vitro. The fluid containing the labelled substance is filled into a cylinder with one open end, through which the labelled substance diffuses out into a stirred outer medium. The diffusion coefficient is calculated by a one-dimensional diffusion equation from the rate of loss from the cylinder, and the length of the cylinder. The diffusion coefficients of tritiated water in several fluids have been determined. The results are in good agreement with those obtained by other methods. 相似文献
19.
A method of plasmid classification by integrative incompatibility has been developed. The characteristics of this system are as follows: (i) The conventional plasmids usually used as standards for incompatibility grouping were integrated into the host chromosome to increase stability and to minimize recombination with the superinfecting plasmid. Strains were constructed by integrative suppression which was in some cases facilitated by the introduction of Tn5 into the plasmid. (ii) The resulting Hfr strains were made deficient in the rec A function to eliminate homologous recombination between the resident and the superinfecting plasmids. A test plasmid is introduced into these rec A Hfr test strains in the stationary phase of growth. In an incompatible cross, the number of transconjugant colonies was usually less than 10?2 of that in a compatible cross. Occasionally, an inhibitory mechanism, other than incompatibility was coded by the resident plasmid [e.g., restriction in R124 (inc FIV)]. This complicated the interpretation, but did not invalidate the experiment. The colonies arising in incompatible crosses were shown to carry drug resistance determinants coded by both the resident and superinfecting plasmids. These were presumably the result of rec-independent integration of all or part of the superinfecting plasmid into the host chromosome. Thus the reduced frequency of superinfectant formation in an incompatible cross is usually the consequence of incompatibility between the resident and the superinfecting plasmids. This integrative incompatibility system should be useful for epidemiological studies of R plasmids. 相似文献
20.
Cardozo DL 《Advances in physiology education》2005,29(4):204-207
In this report, I present a simple model using springs to conceptualize the relationship between ionic conductances across a cellular membrane and their effect on membrane potential. The equation describing the relationships linking membrane potential, ionic equilibrium potential, and ionic conductance is of similar form to that describing the force generated by a spring as a function of its displacement. The spring analogy is especially useful in helping students to conceptualize the effects of multiple conductances on membrane potential. 相似文献