首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burk DL  Hon WC  Leung AK  Berghuis AM 《Biochemistry》2001,40(30):8756-8764
3',5"-Aminoglycoside phosphotransferase type IIIa [APH(3')-IIIa] is a bacterial enzyme that confers resistance to a range of aminoglycoside antibiotics while exhibiting striking homology to eukaryotic protein kinases (ePK). The structures of APH(3')-IIIa in its apoenzyme form and in complex with the nonhydrolyzable ATP analogue AMPPNP were determined to 3.2 and 2.4 A resolution, respectively. Furthermore, refinement of the previously determined ADP complex was completed. The structure of the apoenzyme revealed alternate positioning of a flexible loop (analogous to the P-loop of ePK's), occupying part of the nucleotide-binding pocket of the enzyme. Despite structural similarity to protein kinases, there was no evidence of domain movement associated with nucleotide binding. This rigidity is due to the presence of more extensive interlobe interactions in the APH(3')-IIIa structure than in the ePK's. Differences between the ADP and AMPPNP complexes are confined to the area of the nucleotide-binding pocket. The position of conserved active site residues and magnesium ions remains unchanged, but there are differences in metal coordination between the two nucleotide complexes. Comparison of the di/triphosphate binding site of APH(3')-IIIa with that of ePK's suggests that the reaction mechanism of APH(3")-IIIa and related aminoglycoside kinases will closely resemble that of eukaryotic protein kinases. However, the orientation of the adenine ring in the binding pocket differs between APH(3')-IIIa and the ePK's by a rotation of approximately 40 degrees. This alternate binding mode is likely a conserved feature among aminoglycoside kinases and could be exploited for the structure-based drug design of compounds to combat antibiotic resistance.  相似文献   

2.
Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2'-phosphotransferase IIIa (APH(2')) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2')-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue. Substitution of this tyrosine by a smaller amino acid opens access to the ATP template. Similar GTP binding templates are conserved in other bacterial aminoglycoside kinases, whereas in the structurally related eukaryotic protein kinases this template is less conserved. The aminoglycoside kinases are important antibiotic resistance enzymes in bacteria, whose wide dissemination severely limits available therapeutic options, and the GTP binding templates could be exploited as new, previously unexplored targets for inhibitors of these clinically important enzymes.  相似文献   

3.
The specific intracellular inhibition of protein activity at the protein level allows the determination of protein function in the cellular context. We demonstrate here the use of designed ankyrin repeat proteins as tailor-made intracellular kinase inhibitors. The target was aminoglycoside phosphotransferase (3')-IIIa (APH), which mediates resistance to aminoglycoside antibiotics in pathogenic bacteria and shares structural homology with eukaryotic protein kinases. Combining a selection and screening approach, we isolated 198 potential APH inhibitors from highly diverse combinatorial libraries of designed ankyrin repeat proteins. A detailed analysis of several inhibitors revealed that they bind APH with high specificity and with affinities down to the subnanomolar range. In vitro, the most potent inhibitors showed complete enzyme inhibition, and in vivo, a phenotype comparable with the gene knockout was observed, fully restoring antibiotic sensitivity in resistant bacteria. These results underline the great potential of designed ankyrin repeat proteins for modulation of intracellular protein function.  相似文献   

4.
Fong DH  Berghuis AM 《The EMBO journal》2002,21(10):2323-2331
The misuse of antibiotics has selected for bacteria that have evolved mechanisms for evading the effects of these drugs. For aminoglycosides, a group of clinically important bactericidal antibiotics that target the A-site of the 16S ribosomal RNA, the most common mode of resistance is enzyme-catalyzed chemical modification of the drug. While aminoglycosides are structurally diverse, a single enzyme can confer resistance to many of these antibiotics. For example, the aminoglycoside kinase APH(3')-IIIa, produced by pathogenic Gram-positive bacteria such as enterococci and staphylococci, is capable of detoxifying at least 10 distinct aminoglycosides. Here we describe the crystal structures of APH(3')-IIIa in complex with ADP and kanamycin A or neomycin B. These structures reveal that the basis for this enzyme's substrate promiscuity is the presence of two alternative subsites in the antibiotic binding pocket. Furthermore, comparison between the A-site of the bacterial ribosome and APH(3')-IIIa shows that mimicry is the second major factor in dictating the substrate spectrum of APH(3')-IIIa. These results suggest a potential strategy for drug design aimed at circumventing antibiotic resistance.  相似文献   

5.
Aminoglycoside phosphotransferase (3')-IIIa (APH) is a bacterial kinase that confers antibiotic resistance to many pathogenic bacteria and shares structural homology with eukaryotic protein kinases. We report here the crystal structure of APH, trapped in an inactive conformation by a tailor-made inhibitory ankyrin repeat (AR) protein, at 2.15 A resolution. The inhibitor was selected from a combinatorial library of designed AR proteins. The AR protein binds the C-terminal lobe of APH and thereby stabilizes three alpha helices, which are necessary for substrate binding, in a significantly displaced conformation. BIAcore analysis and kinetic enzyme inhibition experiments are consistent with the proposed allosteric inhibition mechanism. In contrast to most small-molecule kinase inhibitors, the AR proteins are not restricted to active site binding, allowing for higher specificity. Inactive conformations of pharmaceutically relevant enzymes, as can be elucidated with the approach presented here, represent powerful starting points for rational drug design.  相似文献   

6.
The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 Å resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2″) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.  相似文献   

7.
The modification of proteins by reducing sugars through the process of non-enzymatic glycation is one of the principal mechanisms by which hyperglycaemia may precipitate the development of diabetic complications. Fn3K (fructosamine 3-kinase) and Fn3KRP (Fn3K-related protein) are two recently discovered enzymes that may play roles in metabolizing early glycation products. However, although the activity of these enzymes towards various glycated substrates has been established, very little is known about their structure-function relationships or their respective mechanisms of action. Furthermore, their only structural similarities noted to date with members of other kinase families has been with the bacterial aminoglycoside kinases. In the present study, we employed affinity labelling with the ATP analogue FSBA {5'-p-[(fluorosulfonyl)benzoyl]adenosine} to probe the active-site topology of Fn3KRP as an example of this enigmatic family of kinases. FSBA was found to modify Fn3KRP at five distinct sites; four of these were predicted to be localized in close proximity to its ATP-binding site, based on alignments with the aminoglycoside kinase APH(3')-IIIa, and examination of its published tertiary structure. The results of the present studies provide evidence that Fn3KRP possesses an ATP-binding domain that is structurally related to that of both the aminoglycoside kinases and eukaryotic protein kinases.  相似文献   

8.
Chemical genetic analysis of protein kinases involves engineering kinases to be uniquely sensitive to inhibitors and ATP analogs that are not recognized by wild-type kinases. Despite the successful application of this approach to over two dozen kinases, several kinases do not tolerate the necessary modification to the ATP binding pocket, as they lose catalytic activity or cellular function upon mutation of the 'gatekeeper' residue that governs inhibitor and nucleotide substrate specificity. Here we describe the identification of second-site suppressor mutations to rescue the activity of 'intolerant' kinases. A bacterial genetic selection for second-site suppressors using an aminoglycoside kinase APH(3')-IIIa revealed several suppressor hotspots in the kinase domain. Informed by results from this selection, we focused on the beta sheet in the N-terminal subdomain and generated a structure-based sequence alignment of protein kinases in this region. From this alignment, we identified second-site suppressors for several divergent kinases including Cdc5, MEKK1, GRK2 and Pto. The ability to identify second-site suppressors to rescue the activity of intolerant kinases should facilitate chemical genetic analysis of the majority of protein kinases in the genome.  相似文献   

9.
Aminoglycoside phosphotransferases (APHs) constitute a diverse group of enzymes that are often the underlying cause of aminoglycoside resistance in the clinical setting. Several APHs have been extensively characterized, including the elucidation of the three-dimensional structure of two APH(3′) isozymes and an APH(2″) enzyme. Although many APHs are plasmid-encoded and are capable of inactivating numerous 2-deoxystreptmaine aminoglycosides with multiple regiospecificity, APH(9)-Ia, isolated from Legionella pneumophila, is an unusual enzyme among the APH family for its chromosomal origin and its specificity for a single non-2-deoxystreptamine aminoglycoside substrate, spectinomycin. We describe here the crystal structures of APH(9)-Ia in its apo form, its binary complex with the nucleotide, AMP, and its ternary complex bound with ADP and spectinomycin. The structures reveal that APH(9)-Ia adopts the bilobal protein kinase-fold, analogous to the APH(3′) and APH(2″) enzymes. However, APH(9)-Ia differs significantly from the other two types of APH enzymes in its substrate binding area and that it undergoes a conformation change upon ligand binding. Moreover, kinetic assay experiments indicate that APH(9)-Ia has stringent substrate specificity as it is unable to phosphorylate substrates of choline kinase or methylthioribose kinase despite high structural resemblance. The crystal structures of APH(9)-Ia demonstrate and expand our understanding of the diversity of the APH family, which in turn will facilitate the development of new antibiotics and inhibitors.  相似文献   

10.
Enzymatic phosphorylation through a family of enzymes called aminoglycoside O-phosphotransferases (APHs) is a major mechanism by which bacteria confer resistance to aminoglycoside antibiotics. Members of the APH(2″) subfamily are of particular clinical interest because of their prevalence in pathogenic strains and their broad substrate spectra. APH(2″) enzymes display differential preferences between ATP or GTP as the phosphate donor, with aminoglycoside 2″-phosphotransferase IVa (APH(2″)-IVa) being a member that utilizes both nucleotides at comparable efficiencies. We report here four crystal structures of APH(2″)-IVa, two of the wild type enzyme and two of single amino acid mutants, each in complex with either adenosine or guanosine. Together, these structures afford a detailed look at the nucleoside-binding site architecture for this enzyme and reveal key elements that confer dual nucleotide specificity, including a solvent network in the interior of the nucleoside-binding pocket and the conformation of an interdomain linker loop. Steady state kinetic studies, as well as sequence and structural comparisons with members of the APH(2″) subfamily and other aminoglycoside kinases, rationalize the different substrate preferences for these enzymes. Finally, despite poor overall sequence similarity and structural homology, analysis of the nucleoside-binding pocket of APH(2″)-IVa shows a striking resemblance to that of eukaryotic casein kinase 2 (CK2), which also exhibits dual nucleotide specificity. These results, in complement with the multitude of existing inhibitors against CK2, can serve as a structural basis for the design of nucleotide-competitive inhibitors against clinically relevant APH enzymes.  相似文献   

11.
When screening various isoquinolinesulfonamide compounds which we synthesized, CKI-7, N-(2-amino-ethyl)-5-chloroisoquinoline-8-sulfonamide, was found to have a potent inhibitory action against casein kinase I and a much weaker effect on casein kinase II and other protein kinases. Kinetic analysis indicated that CKI-7 inhibited casein kinase I competitively with respect to ATP and that the Ki values were 8.5 microM for casein kinase I and 70 microM for casein kinase II. An affinity chromatography absorbent was synthesized by coupling CKI-8 (1-(5-chloroisoquinoline-8-sulfonyl], a derivative of CKI-7, to cyanogen bromide-activated Sepharose 4B. Partially purified casein kinase I from bovine testis was subjected to affinity chromatography. Analysis of the purified casein kinase I by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed a single band with molecular weight 37,000. These newly synthesized compounds, CKI-7 and CKI-8, should serve as useful tools for elucidating the biological significance of casein kinase I-mediated reactions.  相似文献   

12.
The aminoglycoside antibiotic resistance kinases (APHs) and the Ser/Thr/Tyr protein kinases share structural and functional homology but very little primary sequence conservation (<5%). A region of structural, but not amino acid sequence, homology is the nucleotide positioning loop (NPL) that closes down on the enzyme active site upon binding of ATP. This loop region has been implicated in facilitating phosphoryl transfer in protein kinases; however, there is no primary sequence conservation between APHs and protein kinases in the NPL. There is an invariant Ser residue in all APH NPL regions, however. This residue in APH(3')-IIIa (Ser27), an enzyme widespread in aminoglycoside-resistant Enterococci, Streptococci, and Staphylococci, directly interacts with the beta-phosphate of ATP through the Ser hydroxymethyl group and the amide hydrogen in the 3D structure of the enzyme. Mutagenesis of this residue to Ala and Pro supported a role for the Ser amide hydrogen in nucleotide capture and phosphoryl transfer. A molecular model of the proposed dissociative transition state, which is consistent with all of the available mechanistic data, suggested a role for the amide of the adjacent Met26 in phosphoryl transfer. Mutagenesis studies confirmed the importance of the amide hydrogen and suggest a mechanism where Ser27 anchors the ATP beta-phosphate facilitating bond breakage with the gamma-phosphate during formation of the metaphosphate-like transition, which is stabilized by interaction with the amide hydrogen of Met26. The APH NPL therefore acts as a lever, promoting phosphoryl transfer to the aminoglycoside substrate, with the biological outcome of clinically relevant antibiotic resistance.  相似文献   

13.
H Sternbach  H Küntzel 《Biochemistry》1987,26(14):4207-4212
Cyclic nucleotide independent protein kinases preferring casein as in vitro substrates were resolved into four distinct species. Only one of the enzymes (CKII) was retained by DEAE-cellulose, whereas the three other enzymes (CKI-1, CKI-2, and CKI-3) were absorbed to CM-Sephadex, eluted with 250 and 600 mM NaCl, and fractionated by heparin-Sepharose chromatography. The casein kinase CKI-3 eluting at the highest NaCl concentration (550 mM) was purified to electrophoretic homogeneity by fast protein liquid chromatography. CKI-1 and CKI-2 correspond to mammalian type I casein kinase, because they bind to CM-Sephadex, they are monomeric enzymes of molecular weights below 50,000, they accept ATP exclusively (CKI-1) or predominantly (CKI-2) as phosphate donor, and they are either completely or relatively heparin insensitive. CKII corresponds to type II casein kinase due to its chromatographic properties, complex quaternary structure, nucleotide specificity (both ATP and GTP are phosphate donors), and heparin sensitivity. CKI-3 shares the following properties with type I casein kinases: it is retained by CM-Sephadex but not by DEAE-cellulose, and it consists of a monomeric protein having a molecular weight of 38,000. On the other hand, CKI-3 accepts both ATP and GTP with equal efficiency, and it is heparin sensitive (50% inhibition at 0.3 microgram/mL) like type II casein kinases. CKI-3 differs from the other three yeast casein kinases in requiring a low pH (5.5) and a high MgCl2 concentration (50 mM) for optimal activity. All four casein kinases phosphorylate their own catalytic protein at serine and threonine residues.  相似文献   

14.
The aminoglycoside phosphotransferases (APHs) are widely distributed among pathogenic bacteria and are employed to covalently modify, and thereby detoxify, the clinically relevant aminoglycoside antibiotics. The crystal structure for one of these aminoglycoside kinases, APH(3')-IIIa, has been determined in complex with ADP and analysis of the electrostatic surface potential indicates that there is a large anionic depression present adjacent to the terminal phosphate group of the nucleotide. This region also includes a conserved COOH-terminal alpha-helix that contains the COOH-terminal residue Phe(264). We report here mutagenesis and computer modeling studies aimed at examining the mode of aminoglycoside binding to APH(3')-IIIa. Specifically, seven site mutants were studied, five from the COOH-terminal helix (Asp(261), Glu(262), and Phe(264)), and two additional residues that line the wall of the anionic depression (Tyr(55) and Arg(211)). Using a molecular modeling approach, six ternary complexes of APH(3')-IIIa.ATP with the antibiotics, kanamycin, amikacin, butirosin, and ribostamycin were independently constructed and these agree well with the mutagenesis data. The results obtained show that the COOH-terminal carboxylate of Phe(264) is critical for proper function of the enzyme. Furthermore, these studies demonstrate that there exists multiple binding modes for the aminoglycosides, which provides a molecular basis for the broad substrate- and regiospecificity observed for this enzyme.  相似文献   

15.
The protein-based molecular recognition of the adenine ring has implications throughout biological systems. In this paper, we discuss the adenine-binding region of an aminoglycoside antibiotic kinase [APH(3')-IIIa], which serves as an excellent model system for proteins that bind the adenine ring. This enzyme employs a hydrogen-bonding network involving water molecules along with enzyme backbone/side-chain atoms and a pi-pi stacking interaction to recognize the adenine ring. Our approach utilized site-directed mutagenesis, adenosine analogues and a variety of biophysical methods to probe the contacts in the adenine-binding region of APH(3')-IIIa. The results point to the polar nature of an adenine-Met90 contact in this binding pocket and the important role that Met90, the "gatekeeper" residue in structurally similar Ser/Thr protein kinases, plays in adenine binding. The results also suggest that small changes in the structure of the adenine ring can lead to significant changes in the ability of these analogues to occupy the adenine-binding region of the enzyme. Additional computational experiments indicate that both size and electronic factors are important in the binding of aromatic systems in this interaction-rich pocket. The principles governing adenine recognition established in this study may be applied to other protein-ligand complexes and used to navigate future studies directed at discovering potent and selective inhibitors of APH-type enzymes.  相似文献   

16.
The bifunctional aminoglycoside-modifying enzyme aminoglycoside acetyltransferase(6′)-Ie/aminoglycoside phosphotransferase(2″)-Ia, or AAC(6′)-Ie/APH(2″)-Ia, is the major source of aminoglycoside resistance in Gram-positive bacterial pathogens. In previous studies, using ATP as the cosubstrate, it was reported that the APH(2″)-Ia domain of this enzyme is unique among aminoglycoside phosphotransferases, having the ability to inactivate an unusually broad spectrum of aminoglycosides, including 4,6- and 4,5-disubstituted and atypical. We recently demonstrated that GTP, and not ATP, is the preferred cosubstrate of this enzyme. We now show, using competition assays between ATP and GTP, that GTP is the exclusive phosphate donor at intracellular nucleotide levels. In light of these findings, we reevaluated the substrate profile of the phosphotransferase domain of this clinically important enzyme. Steady-state kinetic characterization using the phosphate donor GTP demonstrates that AAC(6′)-Ie/APH(2″)-Ia phosphorylates 4,6-disubstituted aminoglycosides with high efficiency (kcat/Km = 105-107 m−1 s−1). Despite this proficiency, no resistance is conferred to some of these antibiotics by the enzyme in vivo. We now show that phosphorylation of 4,5-disubstituted and atypical aminoglycosides are negligible and thus these antibiotics are not substrates. Instead, these aminoglycosides tend to stimulate an intrinsic GTPase activity of the enzyme. Taken together, our data show that the bifunctional enzyme efficiently phosphorylates only 4,6-disubstituted antibiotics; however, phosphorylation does not necessarily result in bacterial resistance. Hence, the APH(2″)-Ia domain of the bifunctional AAC(6′)-Ie/APH(2″)-Ia enzyme is a bona fide GTP-dependent kinase with a narrow substrate profile, including only 4,6-disubstituted aminoglycosides.  相似文献   

17.
Ozen C  Serpersu EH 《Biochemistry》2004,43(46):14667-14675
The aminoglycoside-3'-phosphotransferase IIIa [APH(3')-IIIa] phosphorylates aminoglycoside antibiotics and renders them ineffective against bacteria. APH(3')-IIIa is the most promiscuous aminoglycoside phosphotransferase enzyme, and it modifies more than 10 different aminoglycoside antibiotics. A wealth of information exists about the enzyme; however, thermodynamic properties of enzyme-aminoglycoside complexes are still not known. This study describes the determination of the thermodynamic parameters of the binary enzyme-aminoglycoside and the ternary enzyme-metal-ATP-aminoglycoside complexes of structurally related aminoglycosides using isothermal titration calorimetry. Formation of the binary enzyme-aminoglycoside complexes is enthalpically driven and exhibits a strongly disfavored entropic contribution. Formation of the ternary enzyme-metal-ATP-aminoglycoside complexes yields much smaller negative DeltaH values and more favorable entropic contributions. The presence of metal-ATP generally increases the affinity of aminoglycosides to the enzyme. This is consistent with the kinetic mechanism of the enzyme in which ordered binding of substrates occurs. However, the observed DeltaH values neither correlate with kinetic parameters k(cat), K(m), and k(cat)/K(m) nor correlate with the molecular size of the substrates. Comparison of the thermodynamic properties of the complexes formed by structurally similar aminoglycosides indicated that the 2'- and the 6'-amino groups of the substrates are involved in binding to the enzyme. Thermodynamic properties of the complexes formed by aminoglycosides differing only at the 3'-hydroxyl group suggested that the absence of this group does not alter the thermodynamic parameters of the ternary APH(3')-IIIa-metal-ATP-aminoglycoside complex. Our results also indicate that protonation of ligand and protein ionizable groups is coupled to the complex formation between aminoglycosides and APH(3')-IIIa. Comparison of DeltaH values for different aminoglycoside-enzyme complexes indicates that enzyme and substrates undergo significant conformational changes in complex formation.  相似文献   

18.
Aminoglycoside 3'-phosphotransferases (APH(3')s) are common bacterial resistance enzymes to aminoglycoside antibiotics. These enzymes transfer the gamma-phosphoryl group of ATP to the 3'-hydroxyl of the antibiotics, whereby the biological activity of the drugs is lost. Pre-steady-state and steady-state kinetics with two of these enzymes from Gram-negative bacteria, APH(3')-Ia and APH(3')-IIa, were performed. It is demonstrated that these enzymes in both ternary and binary complexes facilitate an ATP hydrolase activity (ATPase), which is competitive with the transfer of phosphate to the antibiotics. Because these enzymes are expressed constitutively in resistant bacteria, the turnover of ATP is continuous during the lifetime of the organism both in the absence and the presence of aminoglycosides. Concentrations of the enzyme in vivo were determined, and it was estimated that in a single generation of bacterial growth there exists the potential that this activity would consume as much as severalfold of the total existing ATP. Studies with bacteria harboring the aph(3')-Ia gene revealed that bacteria are able to absorb the cost of this ATP turnover, as ATP is recycled. However, the cost burden of this adventitious activity manifests a selection pressure against maintenance of the plasmids that harbor the aph(3')-Ia gene, such that approximately 50% of the plasmid is lost in 1500 bacterial generations in the absence of antibiotics. The implication is that, in the absence of selection, bacteria harboring an enzyme that catalyzes the consumption of key metabolites could experience the loss of the plasmid that encodes for the given enzyme.  相似文献   

19.
The functional consequence of the casein kinase I-catalyzed phosphorylation of the lens gap junctional protein connexin49 was investigated using a sheep primary lens cell culture system. To determine whether the phosphorylation of connexin49 catalyzed by endogenous casein kinase I results in an altered junctional communication between lens cells, the effect of the casein kinase I-specific inhibitor CKI-7 on Lucifer Yellow dye transfer between cells in the lens culture was examined. Dye transfer was analyzed in cultures of different ages because we have demonstrated previously that the expression of connexin49 increases as the cultures age while that of connexin43, which is likely not a substrate for casein kinase I, has been shown to decrease [Yang & Louis (1999) Invest. Ophthalmol. Vis. Sci. 41: 2568–2564]. In 9-day old lens cultures, in which gap junctions are composed primarily of connexin43, CKI-7 had little effect on the rate of dye transfer between lens cells. In contrast, treatment of 15-day and 28-day old cultures with CKI-7 resulted in a significant increase in the rate of dye transfer. Thus, the extent of this CKI-7-dependent increase in cell-to-cell communication was positively correlated with the level of expression of connexin49, the major casein kinase I substrate in lens plasma membranes. These results suggest that the casein kinase I-catalyzed phosphorylation of connexin49 decreases cell communication between connexin49-containing gap junctions in the lens. Received: 31 July 2000/Revised: 12 January 2001  相似文献   

20.
The C5'-OH group in neomycin B was glycosylated with a variety of mono- and di-saccharides to probe the effect of introduction of additional binding elements on antibacterial activity and interaction with the aminoglycosides modifying enzyme APH(3')-IIIa. The designed structures show antibacterial activity superior to that of neomycin B against pathogenic and resistant strains, while in parallel they demonstrate poor substrate activity with APH(3')-IIIa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号