首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The skin is the single largest organ in humans, serving as a major barrier to infection, water loss, and abrasion. The functional diversity of skin requires the synthesis of large amounts of lipids, such as triglycerides, wax esters, squalene, ceramides, free cholesterol, free fatty acids, and cholesterol and retinyl esters. Some of these lipids are used as cell membrane components, signaling molecules, and a source of energy. An important class of lipid metabolism enzymes expressed in skin is the Δ9-desaturases, which catalyze the synthesis in Δ9-monounsaturated lipids, primarily oleoyl-CoA (18:1n-9) and palmitoyl-CoA (16:1n-7), the major monounsaturated fatty acids in cutaneous lipids. Mice with a deletion of the Δ9-desaturase-1 isoform (SCD1) either globally (Scd1−/−) or specifically in the skin (skin-specific Scd1-knockout; SKO) present with marked changes in cutaneous lipids and skin integrity. Interestingly, these mice also exhibit increased whole body energy expenditure, protection against diet-induced adiposity, hepatic steatosis, and glucose intolerance. The increased energy expenditure in skin-specific Scd1-knockout (SKO) mice is a surprising phenotype, as it links cutaneous lipid homeostasis with whole body energy balance. This minireview summarizes the role of skin SCD1 in regulating skin integrity and whole body energy homeostasis and offers a discussion of potential pathways that may connect these seemingly disparate phenotypes.  相似文献   

2.
Stearoyl-CoA desaturase-1 (SCD1) catalyzes the synthesis of monounsaturated fatty acids and is an important regulator of whole body energy homeostasis. Severe cutaneous changes in mice globally deficient in SCD1 also indicate a role for SCD1 in maintaining skin lipids. We have generated mice with a skin-specific deletion of SCD1 (SKO) and report here that SKO mice display marked sebaceous gland hypoplasia and depletion of sebaceous lipids. In addition, SKO mice have significantly increased energy expenditure and are protected from high fat diet-induced obesity, thereby recapitulating the hypermetabolic phenotype of global SCD1 deficiency. Genes of fat oxidation, lipolysis, and thermogenesis, including uncoupling proteins and peroxisome proliferator-activated receptor-γ co-activator-1α, are up-regulated in peripheral tissues of SKO mice. However, unlike mice globally deficient in SCD1, SKO mice have an intact hepatic lipogenic response to acute high carbohydrate feeding. Despite increased basal thermogenesis, SKO mice display severe cold intolerance because of rapid depletion of fuel substrates, including hepatic glycogen, to maintain core body temperature. These data collectively indicate that SKO mice have increased cold perception because of loss of insulating factors in the skin. This results in up-regulation of thermogenic processes for temperature maintenance at the expense of fuel economy, illustrating cross-talk between the skin and peripheral tissues in maintaining energy homeostasis.Obesity is a multifactorial disease stemming from a combination of genetic, dietary, and lifestyle factors and the interaction between these components (13). The microsomal enzyme, stearoyl-CoA desaturase-1 (SCD1),3 is a critical control point in the development of metabolic diseases, including obesity and insulin resistance. SCD1 catalyzes the conversion of saturated fatty acids, such as palmitate (16:0) and stearate (18:0), into their Δ-9 monounsaturated products, palmitoleate (16:1 n-7) and oleate (18:1 n-9), respectively. Mice lacking the SCD1 enzyme because of a global deletion of the Scd1 gene (GKO) are lean and protected from diet-induced and leptin deficiency-induced obesity. These mice have a marked increase in energy expenditure and almost complete protection from high fat diet-induced weight gain and glucose intolerance (410).Because SCD1 is expressed in multiple tissues, including liver, brown and white adipose tissue, skeletal muscle, and skin, it has been difficult to determine the relative contributions of these tissues to the dramatically altered metabolic phenotypes of GKO mice. Studies using antisense oligonucleotide-mediated approaches to knock down Scd1 expression have reported protection from diet-induced weight gain and hepatic insulin resistance upon hepatic SCD1 inhibition (1113). However, whereas the liver is a major target of these antisense oligonucleotides, they have also been reported to affect expression of target genes in adipose tissue (13, 14) and possibly other organs (15). Using Cre recombinase-mediated inhibition of hepatic Scd1, we recently reported that chronic deletion of SCD1 specifically in liver does not protect mice from high fat diet-induced obesity (16), suggesting that extra-hepatic tissues may play a more prominent role in the increased energy expenditure phenotype of global SCD1 deficiency (16).In addition to their hypermetabolic phenotype, global SCD1 deficiency also elicits marked cutaneous phenotypes, including dry skin, alopecia, and sebocyte hypoplasia (7, 17, 18). Given the severity of this skin phenotype in GKO mice, we sought to establish a specific role for SCD1 in the skin. In this study, we used the Cre-lox system to generate mice with a skin-specific deletion of SCD1 (SKO). We report here that SKO mice have a severe paucity of lipid-enriched sebocytes in the skin, resulting in dry skin, alopecia, and marked alterations in levels of key skin lipids. Unlike mice with global or liver-specific deletion of SCD1 (7, 16), SKO have an intact hepatic lipogenic response to dietary stimuli. However, deletion of skin SCD1 completely recapitulates the increased energy expenditure phenotype of GKO mice (7) and protects SKO mice from high fat diet-induced obesity, hepatic steatosis, and glucose intolerance. Elevation of genes encoding for cold-inducible factors, including peroxisome proliferator-activated receptor γ co-activator-1α (Pgc-1α) and uncoupling proteins (Ucps) in brown and white adipose tissue and skeletal muscle of SKO mice, suggests up-regulation of thermogenic processes for maintenance of core body temperature in SKO mice. Furthermore, the hypermetabolic phenotype of SKO mice, coupled with the loss of insulating factors in the skin, results in severe cold intolerance in SKO mice that is ameliorated by prior feeding with a high fat diet. To the best of our knowledge, this study represents the first example of skin-specific deletion of a lipogenic enzyme resulting in profound changes in systemic energy metabolism. These data elucidate an as yet under-appreciated role for skin SCD1 in triggering the altered metabolic phenotypes caused by global SCD1 deletion.  相似文献   

3.
Over the past century, obesity has developed into a paramount health issue that affects millions of people worldwide. Obese individuals have an increased risk to develop other metabolic disorders, such as insulin resistance and atherosclerosis, among others. Previously we determined that mice lacking stearoyl-CoA desaturase-1 (SCD1) enzyme specifically in the skin (SKO) were lean and protected from high-fat diet induced adiposity. Additionally, lipocalin 2 (Lcn2) mRNA was found to be 27-fold higher in the skin of SKO mice compared to control mice. Given reports suggesting that Lcn2 plays a role in protection against diet-induced weight gain, adiposity and insulin resistance, we hypothesized that deletion of Lcn2 alongside the skin-specific SCD1 deficiency would diminish the obesity resistance observed in SKO mice. To test this, we developed mice lacking SCD1 expression in the skin and also lacking Lcn2 expression globally and surprisingly, these mice did not gain significantly more weight than the SKO mice under high-fat diet conditions. Therefore, we conclude that Lcn2 does not mediate the protection against high-fat diet-induced adiposity observed in SKO mice.  相似文献   

4.
Stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme that adds a double bond at the delta 9 position of stearate (C18: 0) and palmitate (C16: 0), has been proven to be important in the development of obesity. Mice with skin-specific deficiency of SCD1 (SKO) display increased whole-body energy expenditure, which is protective against adiposity from a high-fat diet because it improves glucose clearance, insulin sensitivity, and hepatic steatosis. Of note, these mice also display elevated levels of the “pro-inflammatory” plasma interleukin-6 (IL-6). In whole skin of SKO mice, IL-6 mRNA levels are increased, and protein expression is evident in hair follicle cells and in keratinocytes. Recently, the well-known role of IL-6 in causing white adipose tissue lipolysis has been linked to indirectly activating the gluconeogenic enzyme pyruvate carboxylase 1 in the liver, thereby increasing hepatic glucose production. In this study, we suggest that skin-derived IL-6 leads to white adipose tissue lipolysis, which contributes to the lean phenotype of SKO mice without the incidence of meta-inflammation that is associated with IL-6 signaling.  相似文献   

5.
6.
Biochemical studies indicate that alcohol dehydrogenase (ADH) metabolizes retinol to retinal, and that aldehyde dehydrogenase (ALDH) metabolizes retinal to retinoic acid, a molecule essential for growth and development. Summarized herein are several genetic studies supporting in vivo functions for ADH and ALDH in retinoic acid synthesis. Gene targeting was used to create knockout mice for either Adh1 or Adh4. Both knockout mice were viable and fertile without obvious defects. However, when wild-type and Adh4 knockout mice were subjected to vitamin A deficiency during gestation, the survival rate at birth was 3.3-fold lower for Adh4 knockout mice. When adult mice were examined for production of retinoic acid following retinol administration, Adh1 knockout mice exhibited 10-fold lower retinoic acid levels in liver compared with wild-type, whereas Adh4 knockout mice differed from wild-type by less than 2-fold. Thus, Adh1 plays a major role in the metabolism of a large dose of retinol to retinoic acid in adults, whereas Adh4 plays a role in maintaining sufficient retinol metabolism for development during retinol deficiency. ALDHs were examined by overexpression studies in frog embryos. Injection of mRNAs for either mouse Raldh1 or Raldh2 stimulated retinoic acid synthesis in frog embryos at the blastula stage when retinoic acid is normally undetectable. Overexpression of human ALDH2, human ALDH3, and mouse Aldh-pb did not stimulate retinoic acid production. In addition, Raldh2 knockout mice exhibit embryonic lethality with defects in retinoid-dependent tissues. Overall, these studies provide genetic evidence that Adh1, Adh4, Raldh1, and Raldh2 encode retinoid dehydrogenases involved in retinoic acid synthesis in vivo.  相似文献   

7.
8.
9.
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in monounsaturated fatty acid synthesis. Previously, we showed that Scd1 deficiency reduces liver triglyceride accumulation and considerably decreases synthesis of very low density lipoprotein and its secretion in both lean and obese mice. In the present study, we found that Scd1 deficiency significantly modulates hepatic glycerophospholipid profile. The content of phosphatidylcholine (PC) was increased by 40% and the activities of CTP:choline cytidylyltransferase (CCT), the rate-limiting enzyme in de novo PC synthesis, and choline phosphotransferase were increased by 64 and 53%, respectively, in liver of Scd1-/- mice. In contrast, the protein level of phosphatidylethanolamine N-methyltransferase, an enzyme involved in PC synthesis via methylation of phosphatidylethanolamine, was decreased by 80% in the liver of Scd1-/- mice. Membrane translocation of CCT is required for its activation. Immunoblot analyses demonstrated that twice as much CCTalpha was associated with plasma membrane in livers of Scd1-/- compared with wild type mice, suggesting that Scd1 mutation leads to an increase in CCT membrane affinity. The incorporation of [(3)H]glycerol into PC was increased by 2.5-fold in Scd1-/- primary hepatocytes compared with those of wild type mice. Furthermore, mitochondrial glycerol-3-phosphate acyltransferase activity was reduced by 42% in liver of Scd1-/- mice; however, the activities of microsomal glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase, and ethanolamine phosphotransferase were not affected by Scd1 mutation. Our study revealed that SCD1 deficiency specifically increases CCT activity by promoting its translocation into membrane and enhances PC biosynthesis in liver.  相似文献   

10.
11.
Stearoyl-CoA desaturase 1 (SCD1) is a delta-9 fatty acid desaturase that catalyzes the synthesis of mono-unsaturated fatty acids (MUFA). SCD1 is a critical control point regulating hepatic lipid synthesis and β-oxidation. Scd1 KO mice are resistant to the development of diet-induced non-alcoholic fatty liver disease (NAFLD). Using a chronic-binge protocol of ethanol-mediated liver injury, we aimed to determine if these KO mice are also resistant to the development of alcoholic fatty liver disease (AFLD).Mice fed a low-fat diet (especially low in MUFA) containing 5% ethanol for 10 days, followed by a single ethanol (5 g/kg) gavage, developed severe liver injury manifesting as hepatic steatosis. This was associated with an increase in de novo lipogenesis and inflammation. Using this model, we show that Scd1 KO mice are resistant to the development of AFLD. Scd1 KO mice do not show accumulation of hepatic triglycerides, activation of de novo lipogenesis nor elevation of cytokines or other pro-inflammatory markers. Incubating HepG2 cells with a SCD1 inhibitor induced a similar resistance to the effect of ethanol, confirming a role for SCD1 activity in mediating ethanol-induced hepatic injury.Taken together, our study shows that SCD1 is a key player in the development of AFLD and associated deleterious effects, and suggests SCD1 inhibition as a therapeutic option for the treatment of this hepatic disease.  相似文献   

12.
The effect of retinoic acid on murine B16 melanoma cell growth, tyrosinase activity and melanin synthesis was investigated. Retinoic acid inhibited the growth of B16F1, B16F10 and B16BL6 melanoma cells, but enhanced melanin synthesis only in the B16F1 cells. The B16F10 and B16BL6 cells exhibited retinoic acid-induced suppression of tyrosinase activity and melanin synthesis, which was most apparent in the B16F10 cell variant. For comparison, Cloudman S91 melanoma cells proved to be particularly sensitive to retinoic acid-induced growth inhibition and stimulation of the expression of their melanotic phenotype. These results suggest considerable heterogeneity in the B16 melanoma with respect to their response to retinoic acid.  相似文献   

13.
Stearoyl-CoA desaturase 1 (SCD1) catalyzes the synthesis of monounsaturated fatty acids (MUFA) from saturated FA. Mice with whole-body or skin-specific deletion of SCD1 are resistant to obesity. Here, we show that mice lacking SCD1 in adipose and/or liver are not protected from either genetic- (agouti; A(y)/a) or diet-induced obesity (DIO) despite a robust reduction in SCD1 MUFA products in both subcutaneous and epididymal white adipose tissue. Adipose SCD1 deletion had no effect on glucose or insulin tolerance or on hepatic triglyceride (TG) accumulation. Interestingly, lack of SCD1 from liver lowered the MUFA levels of adipose tissue and vice versa, as reflected by the changes in FA composition. Simultaneous deletion of SCD1 from liver and adipose resulted in a synergistic lowering of tissue MUFA levels, especially in the A(y)/a model in which glucose tolerance was also improved. Lastly, we found that liver and plasma TG show nearly identical genotype-dependent differences in FA composition, indicating that FA composition of plasma TG is predictive for hepatic SCD1 activity and TG FA composition. The current study suggests that SCD1 deletion from adipose and/or liver is insufficient to elicit protection from obesity, but it supports the existence of extensive lipid cross-talk between liver and adipose tissue.  相似文献   

14.

Background

Cancer cells present a sustained de novo fatty acid synthesis with an increase of saturated and monounsaturated fatty acid (MUFA) production. This change in fatty acid metabolism is associated with overexpression of stearoyl-CoA desaturase 1 (Scd1), which catalyses the transformation of saturated fatty acids into monounsaturated fatty acids (e.g., oleic acid). Several reports demonstrated that inhibition of Scd1 led to the blocking of proliferation and induction of apoptosis in cancer cells. Nevertheless, mechanisms of cell death activation remain to be better understood.

Principal Findings

In this study, we demonstrated that Scd1 extinction by siRNA triggered abolition of de novo MUFA synthesis in cancer and non-cancer cells. Scd1 inhibition-activated cell death was only observed in cancer cells with induction of caspase 3 activity and PARP-cleavage. Exogenous supplementation with oleic acid did not reverse the Scd1 ablation-mediated cell death. In addition, Scd1 depletion induced unfolded protein response (UPR) hallmarks such as Xbp1 mRNA splicing, phosphorylation of eIF2α and increase of CHOP expression. However, the chaperone GRP78 expression, another UPR hallmark, was not affected by Scd1 knockdown in these cancer cells indicating a peculiar UPR activation. Finally, we showed that CHOP induction participated to cell death activation by Scd1 extinction. Indeed, overexpression of dominant negative CHOP construct and extinction of CHOP partially restored viability in Scd1-depleted cancer cells.

Conclusion

These results suggest that inhibition of de novo MUFA synthesis by Scd1 extinction could be a promising anti-cancer target by inducing cell death through UPR and CHOP activation.  相似文献   

15.
16.
Retinoic acid is essential for skin growth and differentiation, and its concentration in skin is controlled tightly. In humans, four different members of the short-chain dehydrogenase/reductase (SDR) superfamily of proteins were proposed to catalyze the rate-limiting step in the biosynthesis of retinoic acid (the oxidation of retinol to retinaldehyde). Epidermis contains at least three of these enzymes, but their relative importance for retinoic acid biosynthesis and regulation of gene expression during growth and differentiation of epidermis is not known. Here, we investigated the effect of the four human SDRs on retinoic acid biosynthesis, and their impact on growth and differentiation of keratinocytes using organotypic skin raft culture model of human epidermis. The results of this study demonstrate that ectopic expression of retinol dehydrogenase 10 (RDH10, SDR16C4) in skin rafts dramatically increases proliferation and inhibits differentiation of keratinocytes, consistent with the increased steady-state levels of retinoic acid and activation of retinoic acid-inducible genes in RDH10 rafts. In contrast, SDRs with dual retinol/sterol substrate specificity, namely retinol dehydrogenase 4 (RoDH4, SDR9C8), RoDH-like 3α-hydroxysteroid dehydrogenase (RL-HSD, SDR9C6), and RDH-like SDR (RDHL, SDR9C4) do not affect the expression of retinoic acid-inducible genes but alter the expression levels of several components of extracellular matrix. These results reveal essential differences in the metabolic contribution of RDH10 versus retinol/sterol dehydrogenases to retinoic acid biosynthesis and provide the first evidence that non-retinoid metabolic products of retinol/sterol dehydrogenases affect gene expression in human epidermis.  相似文献   

17.
Biochemical studies indicate that alcohol dehydrogenase (ADH) metabolizes retinol to retinal, and that aldehyde dehydrogenase (ALDH) metabolizes retinal to retinoic acid, a molecule essential for growth and development. Summarized herein are several genetic studies supporting in vivo functions for ADH and ALDH in retinoic acid synthesis. Gene targeting was used to create knockout mice for either Adh1 or Adh4. Both knockout mice were viable and fertile without obvious defects. However, when wild-type and Adh4 knockout mice were subjected to vitamin A deficiency during gestation, the survival rate at birth was 3.3-fold lower for Adh4 knockout mice. When adult mice were examined for production of retinoic acid following retinol administration, Adh1 knockout mice exhibited 10-fold lower retinoic acid levels in liver compared with wild-type, whereas Adh4 knockout mice differed from wild-type by less than 2-fold. Thus, Adh1 plays a major role in the metabolism of a large dose of retinol to retinoic acid in adults, whereas Adh4 plays a role in maintaining sufficient retinol metabolism for development during retinol deficiency. ALDHs were examined by overexpression studies in frog embryos. Injection of mRNAs for either mouse Raldh1 or Raldh2 stimulated retinoic acid synthesis in frog embryos at the blastula stage when retinoic acid is normally undetectable. Overexpression of human ALDH2, human ALDH3, and mouse Aldh-pb did not stimulate retinoic acid production. In addition, Raldh2 knockout mice exhibit embryonic lethality with defects in retinoid-dependent tissues. Overall, these studies provide genetic evidence that Adh1, Adh4, Raldh1, and Raldh2 encode retinoid dehydrogenases involved in retinoic acid synthesis in vivo.  相似文献   

18.
Diseases such as atherosclerosis, arthritis and cancer have been related with imbalance in ROS production and failures in regulation of the MMPs. Authors suggested a relationship between MPP activity and ROS. Our research group has demonstrated that retinol 7µM induced changes in Sertoli cell metabolism linking retinol treatment and oxidative stress. We verified MMP activity in Sertoli cells treated with vitamin A using gelatin zymography. We found that retinol (7µM) and retinoic acid (1nM) induced MMP-2 activity in Sertoli cells. Antioxidants reversed retinol-induced but not retinoic acid-induced MMP-2 activity. Moreover, retinol but not retinoic acid increased ROS production quantified by DCFH-DA oxidation. We found that retinol and retinoic acid induced ERK1/2 phosphorylation, but only retinol-increased MMP-2 activity was inhibited by UO126, an ERK1/2 phosphorylation inhibitor. Our findings suggested that retinol-induced MMP-2 activity, but not retinoic acid-induced MMP-2 activity, was related to ERK1/2 phosphorylation and ROS production.  相似文献   

19.
Diseases such as atherosclerosis, arthritis and cancer have been related with imbalance in ROS production and failures in regulation of the MMPs. Authors suggested a relationship between MPP activity and ROS. Our research group has demonstrated that retinol 7µM induced changes in Sertoli cell metabolism linking retinol treatment and oxidative stress. We verified MMP activity in Sertoli cells treated with vitamin A using gelatin zymography. We found that retinol (7µM) and retinoic acid (1nM) induced MMP-2 activity in Sertoli cells. Antioxidants reversed retinol-induced but not retinoic acid-induced MMP-2 activity. Moreover, retinol but not retinoic acid increased ROS production quantified by DCFH-DA oxidation. We found that retinol and retinoic acid induced ERK1/2 phosphorylation, but only retinol-increased MMP-2 activity was inhibited by UO126, an ERK1/2 phosphorylation inhibitor. Our findings suggested that retinol-induced MMP-2 activity, but not retinoic acid-induced MMP-2 activity, was related to ERK1/2 phosphorylation and ROS production.  相似文献   

20.
Obesity is currently a worldwide epidemic and public health burden that increases the risk for developing insulin resistance and several chronic diseases such as diabetes, cardiovascular diseases and non-alcoholic fatty liver disease. The multifactorial causes of obesity include several genetic, dietary and lifestyle variables that together result in an imbalance between energy intake and energy expenditure. Dietary approaches to limit fat intake are commonly prescribed to achieve the hypocaloric conditions necessary for weight loss. But dietary fat restriction is often accompanied by increased carbohydrate intake, which can dramatically increase endogenous fatty acid synthesis depending upon carbohydrate composition. Since both dietary and endogenously synthesized fatty acids contribute to the whole-body fatty acid pool, obesity can therefore result from excessive fat or carbohydrate consumption. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a delta-9 fatty acid desaturase that converts saturated fatty acids into monounsaturated fatty acids (MUFA) and this activity is elevated by dietary carbohydrate. Mice lacking Scd1 are protected from obesity and insulin resistance and are characterized by decreased fatty acid synthesis and increased fatty acid oxidation. In this review, we address the association of high-carbohydrate diets with increased SCD activity and summarize the current literature on the subject of SCD1 and body weight regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号