首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hatahet F  Ruddock LW 《The FEBS journal》2007,274(20):5223-5234
Protein folding in the endoplasmic reticulum is often associated with the formation of native disulfide bonds. Their primary function is to stabilize the folded structure of the protein, although disulfide bond formation can also play a regulatory role. Native disulfide bond formation is not trivial, so it is often the rate-limiting step of protein folding both in vivo and in vitro. Complex coordinated systems of molecular chaperones and protein folding catalysts have evolved to help proteins attain their correct folded conformation. This includes a family of enzymes involved in catalyzing thiol-disulfide exchange in the endoplasmic reticulum, the protein disulfide isomerase (PDI) family. There are now 17 reported PDI family members in the endoplasmic reticulum of human cells, but the functional differentiation of these is far from complete. Despite PDI being the first catalyst of protein folding reported, there is much that is still not known about its mechanisms of action. This review will focus on the interactions of the human PDI family members with substrates, including recent research on identifying and characterizing their substrate-binding sites and on determining their natural substrates in vivo.  相似文献   

2.
In mammals, sperm-egg interaction is based on molecular events either unique to gametes or also present in somatic cells. In gamete fusion, it is unknown which features are gamete specific and which are shared with other systems. Conformational changes mediated by thiol-disulfide exchange are involved in the activation of some virus membrane fusion proteins. Here we asked whether that mechanism is also operative in sperm-egg fusion. Different inhibitors of protein disulfide isomerase (PDI) activity were able to inhibit sperm-egg fusion in vitro. While pretreatment of oocytes had no effect, pretreatment of sperm reduced their fusion ability. Some members of the PDI family were detected on the sperm head, and use of specific antibodies and substrates suggested that the oxidoreductase ERp57 has a role in gamete fusion. The results support the idea that thiol-disulfide exchange is a mechanism that may act in gamete fusion to produce conformational changes in fusion-active proteins.  相似文献   

3.
The human PDI family: versatility packed into a single fold   总被引:2,自引:0,他引:2  
The enzymes of the protein disulfide isomerase (PDI) family are thiol-disulfide oxidoreductases of the endoplasmic reticulum (ER). They contain a CXXC active-site sequence where the two cysteines catalyze the exchange of a disulfide bond with or within substrates. The primary function of the PDIs in promoting oxidative protein folding in the ER has been extended in recent years to include roles in other processes such as ER-associated degradation (ERAD), trafficking, calcium homeostasis, antigen presentation and virus entry. Some of these functions are performed by non-catalytic members of the family that lack the active-site cysteines. Regardless of their function, all human PDIs contain at least one domain of approximately 100 amino acid residues with structural homology to thioredoxin. As we learn more about the individual proteins of the family, a complex picture is emerging that emphasizes as much their differences as their similarities, and underlines the versatility of the thioredoxin fold. Here, we primarily explore the diversity of cellular functions described for the human PDIs.  相似文献   

4.
Disruption of the protein-folding capacity in the ER induces the accumulation of unfolded proteins and ER stress, which activate the unfolded protein response (UPR). Although UPR has been extensively studied in yeast and mammals, much less is known about UPR and its relationship with light in plants. Here, we examined the effects of chemically induced UPR and light on a molecular marker of UPR (binding protein, BiP2, gene expression) and a secretory green fluorescent protein marker (GFP-2SC) that is trafficked from the ER to vacuole in Arabidopsis thaliana (L). UPR, which was induced by DTT and tunicamycin (TM), increased Bip2 mRNA levels and decreased the levels of microsomal and vacuolar forms of GFP-2SC. Treatment with protease inhibitors lessened the effects of DTT and TM on GFP-2SC, indicating the decrease in GFP levels partially involved protein degradation. Light treatments synergistically enhanced the decrease in GFP levels in both the ER and vacuole and induced the expression of UPR marker genes for BiP2 and protein disulfide isomerase (PDI, EC 5.3.4.1). DTT and TM treatments required light for maximal induction of the UPR. Light-induced UPR occurred during the daily dark to light cycle and when dark-adapted plants were exposed to light. We propose that light activates the UPR to increase the protein folding capacity in the ER to accommodate an increase in translation during dark to light transitions.  相似文献   

5.
The sulfhydryl oxidase Ero1 oxidizes protein disulfide isomerase (PDI), which in turn catalyzes disulfide formation in proteins folding in the endoplasmic reticulum (ER). The extent to which other members of the PDI family are oxidized by Ero1 and thus contribute to net disulfide formation in the ER has been an open question. The yeast ER contains four PDI family proteins with at least one potential redox-active cysteine pair. We monitored the direct oxidation of each redox-active site in these proteins by yeast Ero1p in vitro. In this study, we found that the Pdi1p amino-terminal domain was oxidized most rapidly compared with the other oxidoreductase active sites tested, including the Pdi1p carboxyl-terminal domain. This observation is consistent with experiments conducted in yeast cells. In particular, the amino-terminal domain of Pdi1p preferentially formed mixed disulfides with Ero1p in vivo, and we observed synthetic lethality between a temperature-sensitive Ero1p variant and mutant Pdi1p lacking the amino-terminal active-site disulfide. Thus, the amino-terminal domain of yeast Pdi1p is on a preferred pathway for oxidizing the ER thiol pool. Overall, our results provide a rank order for the tendency of yeast ER oxidoreductases to acquire disulfides from Ero1p.  相似文献   

6.
7.
The thioredoxin (TRX) superfamily includes redox proteins such as thioredoxins, glutaredoxins (GRXs) and protein disulfide isomerases (PDI). These proteins share a common structural motif named the thioredoxin fold. They are involved in disulfide oxido-reduction and/or isomerization. The sequencing of the Arabidopsisgenome revealed an unsuspected multiplicity of TRX and GRX genes compared to other organisms. The availability of full Chlamydomonasgenome sequence offers the opportunity to determine whether this multiplicity is specific to higher plant species or common to all photosynthetic eukaryotes. We have previously shown that the multiplicity is more limited in Chlamydomonas for TRX and GRX families. We extend here our analysis to the PDI family. This paper presents a comparative analysis of the TRX, GRX and PDI families present in Arabidopsis,Chlamydomonas and Synechocystis. The putative subcellular localization of each protein and its relative expression level, based on EST data, have been investigated. This analysis provides a large overview of the redox regulatory systems present in Chlamydomonas. The data are discussed in view of recent results suggesting a complex cross-talk between the TRX, GRX and PDI redox regulatory networks.  相似文献   

8.
Protein disulfide isomerases (PDIs) catalyse the formation of native disulfide bonds in protein folding pathways. The key steps involve disulfide formation and isomerization in compact folding intermediates. The high-resolution structures of the a and b domains of PDI are now known, and the overall domain architecture of PDI and its homologues can be inferred. The isolated a and a′ domains of PDI are good catalysts of simple thiol–disulfide interchange reactions but require additional domains to be effective as catalysts of the rate-limiting disulfide isomerizations in protein folding pathways. The b′ domain of PDI has a specific binding site for peptides and its binding properties differ in specificity between members of the PDI family. A model of PDI function can be deduced in which the domains function synergically: the b′ domain binds unstructured regions of polypeptide, while the a and a′ domains catalyse the chemical isomerization steps.  相似文献   

9.
Protein disulfide isomerase (PDI) is a multifunctional protein of the endoplasmic reticulum, which catalyzes the formation, breakage and rearrangement of disulfide bonds during protein folding. It consists of four domains designated a, b, b and a. Both a and a domains contain an active site with the sequence motif -Cys-Gly-His-Cys- involved directly in thiol-disulfide exchange reactions. As expected these domains have structures very similar to the ubiquitous redox protein thioredoxin. A low-resolution NMR structure of the b domain revealed that this domain adopts a fold similar to the PDI a domain and thioredoxin [Kemmink, J., Darby, N.J., Dijkstra, K., Nilges, M. and Creighton, T.E. (1997) Curr. Biol., 7, 239–245]. A refined ensemble of solution structures based on the input of 1865 structural restraints shows that the structure of PDI b is well defined throughout the complete protein except for about 10 residues at the C-terminus of the sequence. 15N relaxation data show that these residues are disordered and not part of this structural domain. Therefore the domain boundaries of PDI can now be fixed with reasonable precision. Structural comparison of the PDI b domain with thioredoxin and PDI a reveals several features important for thiol-disulfide exchange activity.  相似文献   

10.
Protein disulfide isomerase (PDI) is a major protein in the endoplasmic reticulum, operating as an essential folding catalyst and molecular chaperone for disulfide-containing proteins by catalyzing the formation, rearrangement, and breakage of their disulfide bridges. This enzyme has a modular structure with four thioredoxin-like domains, a, b, b′, and a′, along with a C-terminal extension. The homologous a and a′ domains contain one cysteine pair in their active site directly involved in thiol-disulfide exchange reactions, while the b′ domain putatively provides a primary binding site for unstructured regions of the substrate polypeptides. Here, we report a redox-dependent intramolecular rearrangement of the b′ and a′ domains of PDI from Humicola insolens, a thermophilic fungus, elucidated by combined use of nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) methods. Our NMR data showed that the substrates bound to a hydrophobic surface spanning these two domains, which became more exposed to the solvent upon oxidation of the active site of the a′ domain. The hydrogen-deuterium exchange and relaxation data indicated that the redox state of the a′ domain influences the dynamic properties of the b′ domain. Moreover, the SAXS profiles revealed that oxidation of the a′ active site causes segregation of the two domains. On the basis of these data, we propose a mechanistic model of PDI action; the a′ domain transfers its own disulfide bond into the unfolded protein accommodated on the hydrophobic surface of the substrate-binding region, which consequently changes into a “closed” form releasing the oxidized substrate.  相似文献   

11.
12.
Integrins belong to a family of transmembrane receptors that mediate cell migration and adhesion to ECM. Extracellular domains of integrin heterodimers contain cysteine-rich regions, which are potential sites of thiol-disulfide exchanges. Rearrangements of extracellular disulfide bonds regulate activation of integrin receptors by promoting transition from an inactive state into a ligand-binding competent state. Modifications of integrin disulfide bonds dependent on oxidation-reduction can be mediated by Protein Disulfide Isomerse (PDI). This paper provides evidences that binding to integrin ligands initiate changes in free thiol pattern on cell surface and that thiol-disulfide exchange mediated by PDI leads to activation of integrin subunit α11. By employing co-immunoprecipitation and confocal microscopy analysis we showed that α11β1 and PDI create complexes bounded by disulfide bonds. Using surface plasmon resonance we provide biochemical evidence that PDI can interact directly with integrin subunit α11.  相似文献   

13.
In the major pathway for protein disulfide-bond formation in the endoplasmic reticulum (ER), oxidizing equivalents flow from the conserved ER-membrane protein Ero1p to secretory proteins via protein disulfide isomerase (PDI). Herein, a mutational analysis of the yeast ERO1 gene identifies two pairs of conserved cysteines likely to form redox-active disulfide bonds in Ero1p. Cys100, Cys105, Cys352, and Cys355 of Ero1p are important for oxidative protein folding and for cell viability, whereas Cys90, Cys208, and Cys349 are dispensable for these functions. Substitution of Cys100 with alanine impedes the capture of Ero1p-Pdi1p mixed-disulfide complexes from yeast, and also blocks oxidation of Pdi1p in vivo. Cys352 and Cys355 are required to maintain the fully oxidized redox state of Ero1p, and also play an auxiliary role in thiol-disulfide exchange with Pdi1p. These results suggest a model for the function of Ero1p wherein Cys100 and Cys105 form a redox-active disulfide bond that engages directly in thiol-disulfide exchange with ER oxidoreductases. The Cys352-Cys355 disulfide could then serve to reoxidize the Cys100-Cys105 cysteine pair, possibly through an intramolecular thiol-disulfide exchange reaction.  相似文献   

14.
In the rice (Oryza sativa) endosperm, storage proteins are synthesized on the rough endoplasmic reticulum (ER), in which prolamins are sorted to protein bodies (PBs) called type-I PB (PB-I). Protein disulfide isomerase (PDI) family oxidoreductase PDIL2;3, an ortholog of human P5, contains a conserved structural disulfide in the redox-inactive thioredoxin-like (TRX) domain and was efficiently targeted to the surface of PB-I in a redox active site-dependent manner, whereas PDIL1;1, an ortholog of human PDI, was localized in the ER lumen. Complementation analyses using PDIL1;1 knockout esp2 mutant indicated that the a and a' TRX domains of PDIL1;1 exhibited similar redox activities and that PDIL2;3 was unable to perform the PDIL1;1 functions. PDIL2;3 knockdown inhibited the accumulation of Cys-rich 10-kD prolamin (crP10) in the core of PB-I. Conversely, crP10 knockdown dispersed PDIL2;3 into the ER lumen. Glutathione S-transferase-PDIL2;3 formed a stable tetramer when it was expressed in Escherichia coli, and the recombinant PDIL2;3 tetramer facilitated α-globulin(C79F) mutant protein to form nonnative intermolecular disulfide bonds in vitro. These results indicate that PDIL2;3 and PDIL1;1 are not functionally redundant in sulfhydryl oxidations of structurally diverse storage proteins and play distinct roles in PB development. We discuss PDIL2;3-dependent and PDIL2;3-independent oxidation pathways that sustain disulfide bonds of crP10 in PB-I.  相似文献   

15.
16.
Oxidoreductases belonging to the protein disulfide isomerase (PDI) family promote proper disulfide bond formation in substrate proteins in the endoplasmic reticulum. In plants and metazoans, new family members continue to be identified and assigned to various functional niches. PDI-like proteins typically contain tandem thioredoxin-fold domains. The limited information available suggested that the relative orientations of these domains may be quite uniform across the family, and structural models based on this assumption are appearing. However, the X-ray crystal structure of the yeast PDI family protein Mpd1p, described here, demonstrates the radically different domain orientations and surface properties achievable with multiple copies of the thioredoxin fold. A comparison of Mpd1p with yeast Pdi1p expands our perspective on the contexts in which redox-active motifs are presented in the PDI family.  相似文献   

17.
蛋白质二硫键异构酶家族的结构与功能   总被引:1,自引:0,他引:1  
蛋白质二硫键异构酶(protein disulfide isomerase,PDI)家族是一类在内质网中起作用的巯基-二硫键氧化还原酶.它们通常含有CXXC(Cys-Xaa-Xaa-Cys,CXXC)活性位点,活性位点的两个半胱氨酸残基可催化底物二硫键的形成、异构及还原.所有PDI家族成员包含至少一个约100个氨基酸残基的硫氧还蛋白同源结构域.PDI家族的主要职能是催化内质网中新生肽链的氧化折叠,另外在内质网相关的蛋白质降解途径(ERAD)、蛋白质转运、钙稳态、抗原提呈及病毒入侵等方面也起重要作用.  相似文献   

18.
Two thioredoxin cDNAs from soybean were isolated by screening an expression library using an anti-(plasma membrane) serum. The nucleotide sequences of the two cDNAs were found to be 89% identical. The polypeptides encoded by the two cDNAs, designated TRX1 and TRX2, contain a disulfide active site, as found in other thioredoxins. TRX1 was expressed as a fusion protein in Escherichia coli and shown to possess thiol-disufide interchange activity. Unlike other eukaryotic thioredoxins, these two soybean thioredoxins contain a putative transmembrane domain in their N-terminal regions. To determine subcellular location, the TRX1 was fused with a reporter epitope at its C-terminus and expressed in transgenic tobacco plants. The fusion protein was co-purified with plasma membrane markers 1,3-glucan synthase and vanadate-sensitive ATPase, indicating the plasma membrane location of TRX1. When the reporter epitope was inserted between the start codon and the transmembrane domain in the N-terminus, the fusion protein was found in the soluble fraction, possibly due to disruption of the transmembrane domain by the highly hydrophilic epitope sequence. Taken together, our results demonstrate that soybean TRX1 is a plasma membrane-bound thioredoxin, which is most likely anchored to the membrane through the N-terminal transmembrane domain. It is known that plant plasma membranes contain various proteins with thiol-disulfide interchange activity. The soybean thioredoxins reported here are the first group of such proteins to be characterized at the molecular level. However, the biological function of the plasma membrane-bound thioredoxin remains to be determined.  相似文献   

19.
The effects of the steroid hormone 17beta-estradiol are mediated through its interaction with the nuclear estrogen receptor (ER). Upon binding 17beta-estradiol, the ER initiates changes in gene expression through its interaction with specific DNA sequences, estrogen response elements (EREs), and recruits coregulatory proteins that influence gene expression. To better understand how estrogen-responsive genes are regulated, we have isolated and identified proteins associated with ERalpha when it is bound to the consensus ERE. One of these proteins, protein disulfide isomerase (PDI), has two distinct functions: acting as a molecular chaperone to maintain properly folded proteins and regulating the redox state of proteins by catalyzing the thiol-disulfide exchange reaction through two thioredoxin-like domains. Using a battery of biochemical and molecular techniques, we have demonstrated that PDI colocalizes with ERalpha in MCF-7 nuclei, alters ERalpha conformation, enhances the ERalpha-ERE interaction in the absence and presence of an oxidizing agent, influences the ability of ERalpha to mediate changes in gene expression, and associates with promoter regions of two endogenous estrogen-responsive genes. Our studies suggest that PDI plays a critical role in estrogen responsiveness by functioning as a molecular chaperone and assisting the receptor in differentially regulating target gene expression.  相似文献   

20.
Protein disulfide isomerase (PDI) family proteins are classified as enzymatic chaperones for reconstructing misfolded proteins. Previous studies have shown that several PDI members possess potential proapoptotic functions. However, the detailed molecular mechanisms of PDI-mediated apoptosis are not completely known. In this study, we investigated how two members of PDI family, PDI and PDIA3, modulate apoptotic signaling. Inhibiting PDI and PDIA3 activities pharmacologically alleviates apoptosis induced by various apoptotic stimuli. Although a decrease of PDIA3 expression alleviates apoptotic responses, overexpression of PDIA3 exacerbates apoptotic signaling. Importantly, Bak, but not Bax, is essential for PDIA3-induced proapoptotic signaling. Furthermore, both purified PDI and PDIA3 proteins induce Bak-dependent, but not Bax-dependent, mitochondrial outer membrane permeabilization in vitro, probably through triggering Bak oligomerization on mitochondria. Our results suggest that both of PDI and PDIA3 possess Bak-dependent proapoptotic function through inducing mitochondrial outer membrane permeabilization, which provides a new mechanism linking ER chaperone proteins and apoptotic signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号