首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A novel rat tetraspan protein in cells of the oligodendrocyte lineage   总被引:1,自引:0,他引:1  
The tetraspanin/transmembrane 4 superfamily gene superfamily encodes proteins that span the plasma membrane four times. Tetraspan proteins are implicated in proliferation, motility, and differentiation in various cell types, and in some cells they may link plasma membrane proteins into signalling complexes. Using a subtractive cDNA library prepared from oligodendrocytes and their progenitor cells, we have identified Tspan-2 as a member of this superfamily. In situ hybridization analysis revealed robust expression in cells of the oligodendrocyte lineage in comparison with the Plp gene, a well-characterized marker for myelin-forming glia in the CNS. Rat Tspan-2 mRNA is restricted to the nervous system and is detectable by northern blot shortly after birth in the CNS. Subsequently the gene is up-regulated strongly between postnatal day 3 and 10, and expression levels continue to rise up to postnatal day 22. These data indicate that Tspan-2 is likely to play a role in signalling in oligodendrocytes in the early stages of their terminal differentiation into myelin-forming glia and may also function in stabilizing the mature sheath.  相似文献   

2.
3.
With the intention to modulate gene expression in vascular mural cells of remodeling vessels, we generated and characterized transgenic mouse lines with Cre recombinase under the control of the platelet-derived growth factor receptor-β promoter, referred to as Tg(Pdgfrb-Cre)(35Vli) . Transgenic mice were crossed with the Gt(ROSA)26Sor(tm1Sor) strain and examined for Cre activation by β-galactosidase activity, which was compared with endogenous Pdgfrb expression. In addition, Pdgfrb-Cre mice were used to drive expression of a conditional myc-tagged Cthrc1 transgene. There was good overlap of β-galactosidase activity with endogenous Pdgfrb immunoreactivity. However, dedifferentiation of vascular mural cells induced by carotid artery ligation revealed a dramatic discrepancy between ROSA26 reporter activity and Pdgfrb promoter driven Cre dependent myc-tagged Cthrc1 transgene expression. Our studies demonstrate the capability of the Pdgfrb-Cre mouse to drive conditional transgene expression as a result of prior Cre-mediated recombination in tissues known to express endogenous Pdgfrb. In addition, the study shows that ROSA26 promoter driven reporter mice are not suitable for lineage marking of smooth muscle in remodeling blood vessels.  相似文献   

4.
The cholinergic gene locus (CGL) consists of the genes encoding the choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT). To establish a cholinergic-specific Cre-expressing mouse, we constructed a transgene expression vector (VAChT-Cre) with 11.3 kb human CGL in which a Cre-IRES-EGFP unit was inserted in the VAChT open reading frame. The activity of Cre, whose expression was driven by the VAChT promoter, was examined by crossing a reporter mouse (CAG-CAT-Z) in which expression of LacZ is activated upon Cre-mediated recombination. Transgenic lines with the VAChT-Cre construct displayed the restricted Cre expression in a subset of cholinergic neurons in the somatomotor nuclei and medial habenular nucleus, but absent in visceromotor and other central and peripheral cholinergic neurons. Cre expression was first observed at postnatal day 7 and later detected in approximately 40-60% of somatomotor neurons. Based on the onset of Cre expression, we generated two mouse lines (two alleles; VAChT-Cre. Fast and VAChT-Cre.Slow) in which Cre expression reaches maximal levels fast and slow, respectively. The use of VAChT-Cre mice should allow us to deliver Cre to a subset of postnatal motor neurons, thereby bypassing lethality and facilitating analysis of gene function in adult motor neurons.  相似文献   

5.
Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1‐lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion‐transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (a ntis ilencer/e nhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. Although removal of the ASE from Plp1‐lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli‐neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone‐induced (acute) demyelination. Thus, it is possible that the ASE is non‐functional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene.  相似文献   

6.
Recombinant adeno-associated virus (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in adult rodents have shown that the use of cell type-specific promoters is sufficient to target AAV-mediated transgene expression to glia. However, neurological disorders caused by glial pathology usually have an early onset. Therefore, modelling and treatment of these conditions require expanding the concept of targeted glial transgene expression by promoter selectivity for gene delivery to the immature CNS. Here, we have investigated the AAV-mediated green fluorescent protein (GFP) expression driven by the myelin basic protein (MBP) or glial fibrillary acidic protein (GFAP) promoters in the developing mouse brain. Generally, the extent of transgene expression after infusion at immature stages was widespread and higher than in adults. The GFAP promoter-driven GFP expression was found to be highly specific for astrocytes following vector infusion to the brain of neonates and adults. In contrast, the selectivity of the MBP promoter for oligodendrocytes was poor following neonatal AAV delivery, but excellent after vector injection at postnatal day 10. To extend these findings obtained in naïve mice to a disease model, we performed P10 infusions of AAV-MBP-GFP in aspartoacylase (ASPA)-deficient mouse mutants presenting with early onset oligodendrocyte pathology. Spread of GFP expression and selectivity for oligodendrocytes in ASPA-mutants was comparable with our observations in normal animals. Our data suggest that direct AAV infusion to the developing postnatal brain, utilising cellular promoters, results in targeted and long-term transgene expression in glia. This approach will be relevant for disease modelling and gene therapy for the treatment of glial pathology.  相似文献   

7.
We developed a conditional and inducible gene knockout methodology that allows effective gene deletion in mouse cardiomyocytes. This transgenic mouse line was generated by coinjection of two transgenes, a “reverse” tetracycline‐controlled transactivator (rtTA) directed by a rat cardiac troponin T (Tnnt2) promoter and a Cre recombinase driven by a tetracycline‐responsive promoter (TetO). Here, Tnnt2‐rtTA activated TetO‐Cre expression takes place in cardiomyocytes following doxycycline treatment. Using two different mouse Cre reporter lines, we demonstrated that expression of Cre recombinase was specifically and robustly induced in the cardiomyocytes of embryonic or adult hearts following doxycycline induction, thus, allowing cardiomyocyte‐specific gene disruption and lineage tracing. We also showed that rtTA expression and doxycycline treatment did not compromise cardiac function. These features make the Tnnt2‐rtTA;TetO‐Cre transgenic line a valuable genetic tool for analysis of spatiotemporal gene function and cardiomyocyte lineage tracing during developmental and postnatal periods. genesis 48:63–72, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
Oocyte-specific deletion of ovarian genes using Cre/loxP technology provides an excellent tool to understand their physiological roles during folliculogenesis, oogenesis, and preimplantation embryonic development. We have generated a transgenic mouse line expressing improved Cre recombinase (iCre) driven by the mouse growth differentiation factor-9 (GDF-9) promoter. The resulting transgenic mouse line was named GDF-9-iCre mice. Using the floxed ROSA reporter mice, we found that Cre recombinase was expressed in postnatal ovaries, but not in heart, liver, spleen, kidney, and brain. Within the ovary, the Cre recombinase was exclusively expressed in the oocytes of primordial follicles and follicles at later developmental stages. The expression of iCre of GDF-9-iCre mice was shown to be earlier than the Cre expression of Zp3Cre and Msx2Cre mice, in which the Cre gene is driven by zona pellucida protein 3 (Zp3) promoter and a homeobox gene Msx2 promoter, respectively, in the postnatal ovary. Breeding wild-type males with heterozygous floxed germ cell nuclear factor (GCNF) females carrying the GDF-9-iCre transgene did not produce any progeny having the floxed GCNF allele, indicating that complete deletion of the floxed GCNF allele can be achieved in the female germline by GDF-9-iCre mice. These results suggest that GDF-9-iCre mouse line provides an excellent genetic tool for understanding functions of oocyte-expressing genes involved in folliculogenesis, oogenesis, and early embryonic development. Comparison of the ontogeny of the Cre activities of GDF-9-iCre, Zp3Cre, and Msx2Cre transgenic mice shows there is sequential Cre activity of the three transgenes that will allow inactivation of a target gene at different points in folliculogenesis.  相似文献   

10.
Utilizing a recently identified Sox10 distal enhancer directing Cre expression, we report S4F:Cre, a transgenic mouse line capable of inducing recombination in oligodendroglia and all examined neural crest derived tissues. Assayed using R26R:LacZ reporter mice expression was detected in neural crest derived tissues including the forming facial skeleton, dorsal root ganglia, sympathetic ganglia, enteric nervous system, aortae, and melanoblasts, consistent with Sox10 expression. LacZ reporter expression was also detected in non‐neural crest derived tissues including the oligodendrocytes and the ventral neural tube. This line provides appreciable differences in Cre expression pattern from other transgenic mouse lines that mark neural crest populations, including additional populations defined by the expression of other SoxE proteins. The S4F:Cre transgenic line will thus serve as a powerful tool for lineage tracing, gene function characterization, and genome manipulation in these populations. genesis 47:765–770, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Cre‐loxP technology enables specific examination of the function and development of individual nuclei in the complex brain network. However, for most brain regions, the utilization of this technique has been hindered by the lack of mouse lines with Cre expression restricted to these regions. Here, we identified brain expressions of three transgenic Cre lines previously thought to be pancreas‐specific. Cre expression driven by the rat‐insulin promoter (Rip‐Cre) was found mainly in the arcuate nucleus, and to a lesser degree in other hypothalamic regions. Cre expression driven by the neurogenin 3 promoter (Ngn3‐Cre mice) was found in the ventromedial hypothalamus. Cre expression driven by the pancreas‐duodenum homeobox 1 promoter (Pdx1‐Cre) was found in several hypothalamic nuclei, the dorsal raphe and inferior olivary nuclei. Interestingly, Pdx1‐Cre mediated deletion of vesicular GABA transporter led to postnatal growth retardation while Ngn3‐Cre mediated deletion had no effects, suggesting a role for Pdx1‐Cre neurons, but not pancreas, in the regulation of postnatal growth. These results demonstrate the potential for these Cre lines to study the function and development of brain neurons. genesis 48:628–634, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Cre/LoxP-mediated DNA recombination allows for gene function and cell lineage analyses during embryonic development and tissue regeneration. Here, we describe the derivation of a K19(CreERT) mouse line in which the tamoxifen-activable CreER(T) was knocked into the endogenous cytokeratin 19 locus. In the absence of tamoxifen, leaky Cre activity could be detected only in less than 1% of stomach and intestinal epithelial cells, but not in pancreatic or hepatic epithelial tissues. Tamoxifen administration in postnatal animals induced widespread DNA recombination in epithelial cells of pancreatic ducts, hepatic ducts, stomach, and intestine in a dose-dependent manner. Significantly, we found that Cre activity could be induced in the putative gut stem/progenitor cells that sustained long-term gut epithelial expression of a Cre reporter. This mouse line should therefore provide a valuable reagent for manipulating gene activity and for cell lineage marking in multiorgans during normal tissue homeostasis and regeneration.  相似文献   

13.
Transgenic mice that express Cre recombinase in hypertrophic chondrocytes   总被引:3,自引:0,他引:3  
In order to investigate the physiological control of hypertrophic chondrocytes which present the terminally differentiated form of chondrocytes, we generated a mouse line expressing the Cre recombinase under the control of the mouse type X collagen (Col10a1) promoter. In situ hybridization analysis demonstrated the expression of Col10a1-Cre transgene in hypertrophic chondrocytes of femur at postnatal day 2 (P2). In order to test the excision activity of the Cre recombinase, the Col10a1-Cre transgenic line was crossed with the mouse strain carrying the Smad4 conditional alleles (Smad4co/co) and the reporter line ROSA26. Multiple tissue PCR of Col10a1-Cre;Smad4co/+ mice revealed the restricted Cre activity in tissues containing hypertrophic chondrocytes. LacZ staining revealed that the Cre activity was observed in the cartilage primordia of ribs at E14.5 and only detected in the lower hypertrophic region of ribs at P1. These data suggest that the Col10a1-Cre mouse line described here could be used to achieve conditional gene targeting in hypertrophic chondrocytes.  相似文献   

14.
Cre/loxP-dependent expression of fluorescent proteins represents a powerful biological tool for cell lineage, fate-mapping, and genetic analysis. Live tissue imaging has significantly improved with the development of far-red fluorescent proteins, with optimized spectral characteristics for in vivo applications. Here, we report the generation of the first transgenic mouse line expressing the far-red fluorescent protein Katushka, driven by the hybrid CAG promoter upon Cre-mediated recombination. After germ line or tissue-specific Cre-driven reporter activation, Katushka expression is strong and ubiquitous, without toxic effects, allowing fluorescence detection in fresh and fixed samples from all tissues examined. Moreover, fluorescence can be detected by in vivo noninvasive whole-body imaging when Katuhska is expressed exclusively in a specific cell population deep within the animal body such as pancreatic beta cells. Thus, this reporter model enables early, widespread, and sensitive in vivo detection of Cre activity and should provide a versatile tool for a wide spectrum of fluorescence and live-imaging applications.  相似文献   

15.
16.
The mammalian CNS contains a ubiquitous population of glial progenitors known as NG2+ cells that have the ability to develop into oligodendrocytes and undergo dramatic changes in response to injury and demyelination. Although it has been reported that NG2+ cells are multipotent, their fate in health and disease remains controversial. Here, we generated PDGFαR-CreER transgenic mice and followed their fate in vivo in the developing and adult CNS. These studies revealed that NG2+ cells in the postnatal CNS generate myelinating oligodendrocytes, but not astrocytes or neurons. In regions of neurodegeneration in the spinal cord of ALS mice, NG2+ cells exhibited enhanced proliferation and accelerated differentiation into oligodendrocytes but remained committed to the oligodendrocyte lineage. These results indicate that NG2+ cells in the normal CNS are oligodendrocyte precursors with restricted lineage potential and that cell loss and gliosis are not sufficient to alter the lineage potential of these progenitors.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号