首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 31 毫秒
1.
2.
Clotting systems are required in almost all animals to prevent loss of body fluids after injury. Here, we show that despite the risks associated with its systemic activation, clotting is a hitherto little appreciated branch of the immune system. We compared clotting of human blood and insect hemolymph to study the best-conserved component of clotting systems, namely the Drosophila enzyme transglutaminase and its vertebrate homologue Factor XIIIa. Using labelled artificial substrates we observe that transglutaminase activity from both Drosophila hemolymph and human blood accumulates on microbial surfaces, leading to their sequestration into the clot. Using both a human and a natural insect pathogen we provide functional proof for an immune function for transglutaminase (TG). Drosophila larvae with reduced TG levels show increased mortality after septic injury. The same larvae are also more susceptible to a natural infection involving entomopathogenic nematodes and their symbiotic bacteria while neither phagocytosis, phenoloxidase or—as previously shown—the Toll or imd pathway contribute to immunity. These results firmly establish the hemolymph/blood clot as an important effector of early innate immunity, which helps to prevent septic infections. These findings will help to guide further strategies to reduce the damaging effects of clotting and enhance its beneficial contribution to immune reactions.  相似文献   

3.
Tissue transglutaminase (TGase) has been implicated in both cell survival and apoptosis. Here we investigate the role of TGase in β-amyloid-induced neurotoxicity using retinoic acid (RA)-differentiated, neuronal SH-SY5Y cells. We show that β-amyloid-induced cell death was reduced in RA-differentiated SH-SY5Y cells treated with the TGase inhibitor monodansyl cadaverine. Expression of wild-type TGase enhanced β-amyloid1-42-induced apoptosis, whereas transamidation-defective TGase did not. These effects were specific for β-amyloid-treated cells, as TGase reversed the neurotoxic effects caused by hydrogen peroxide treatment. Enhancement of β-amyloid1-42-induced cell death by TGase was accompanied by marked increases in TGase activity in the membrane fractions and translocation of TGase to the cell surface. Overall, these findings suggest that the ability of TGase to exhibit pro-survival versus pro-apoptotic activity is linked to its cellular localization, with β-amyloid-induced recruitment of TGase to the cell surface accentuating neuronal toxicity and apoptosis.  相似文献   

4.
《Autophagy》2013,9(5):480-483
Apoptosis (type I) and autophagy (type II) are both highly regulated forms of programmed cell death and play crucial roles in physiological processes such as the development, homeostasis and selective, moderate to massive elimination of cells, if needed. Accumulating evidence suggests that cancer cells, including pancreatic cancer cells, in general tend to have reduced autophagy relative to their normal counterparts and premalignant lesions, supporting the contention that defective autophagy provides resistance to metabolic stress such as hypoxia, acidity and chemotherapeutics, promotes tumor cell survival and plays a role in the process of tumorigenesis. However, the mechanisms underlying the reduced capability of undergoing autophagy in pancreatic cancer remain elusive. In a recent study, we demonstrated a novel mechanism for regulation of autophagy in pancreatic ductal carcinoma cells. We found that protein kinase C-delta (PKCδ) constitutively suppresses autophagy through induction of tissue transglutaminase (TG2). Inhibition of PKCδ/TG2 signaling resulted in significant autophagic cell death that was mediated by Beclin 1. Elevated expression of TG2 in pancreatic cancer cells has been implicated in the development of drug resistance, metastatic phenotype and poor patient prognosis. In conclusion, our data suggest a novel role of PKCδ/TG2 in regulation of autophagy, and that TG2 may serve as an excellent therapeutic target in pancreatic cancer cells.

Addendum to:

Tissue Transglutaminase Inhibits Autophagy in Pancreatic Cancer Cells

U. Akar, B. Ozpolat, K. Mehta, J. Fok, Y. Kondo and G. Lopez-Berestein

Mol Cancer Res 2007; 5:241-9  相似文献   

5.
Transglutaminases(TGs;E.C.2.3.2.13)are ubiquitous enzymes which catalyze post-translational modifications of proteins.TGs and TG-catalyzed post-translational modifications of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases.In particular,TG activity has been hypothesized to also be involved also in the molecular mechanisms responsible for human neurodegenerative diseases.In support of this hypothesis,Basso et al recently demonstrated that the TG inhibition protects against oxidative stress-induced neuronal death,suggesting that multiple TG isoforms participate in oxidative stress-induced cell death and that nonselective TG isoform inhibitors will be most effective in fighting oxidative death in neurological disorders.In this commentary,we discuss the possible molecular mechanisms by which TG activity could be involved in the pathogenesis of neurological diseases,with particular reference to neurodegenerative diseases,and the possible involvement of multiple TG isoforms expressed simultaneously in the nervous system in these diseases.Moreover,therapeutic strategies based on the use of selective or nonselective TG inhibitors for the amelioration of thesymptoms of patients with neurological diseases,characterized by aberrant TG activity,are also discussed.  相似文献   

6.
Thymosin β4 is the prototype of β-thymosins and is present in almost every mammalian cell. It is regarded to be the main intracellular G-actin sequestering peptide. Thymosin β4 serves as a specific glutaminyl substrate for guinea pig transglutaminase. In the absence of an appropriate additional aminyl donor an ε-amino group of thymosin β4 serves also as an aminyl substrate and an intramolecular bond is formed concomitantly NH3 (17 Da) is lost. The molecular mass of the product is 4,949.6 Da. This is 16.3 Da less than the molecular mass of thymosin β4 (4,965.9 Da). Digestion with endopeptidases and Edman degradation of the fragments identified the exact position of the ring forming isopeptide bond. In spite of 3 glutaminyl and 9 lysyl residues of thymosin β4 only one isopeptide bond between Lys16 and Gln36 was formed (cyclic thymosin β4). These two amino acid residues are conserved in all β-thymosins. Cyclic thymosin β4 still forms a complex with G-actin albeit the stability of the complex is about one fiftieth of the stability of the thymosin β× G-actin complex.  相似文献   

7.
An important neuropathological feature of neuroinflammatory processes that occur during e.g. Multiple Sclerosis (MS) is the formation of an astroglial scar. Astroglial scar formation is facilitated by the interaction between astrocytes and extracellular matrix proteins (ECM) such as fibronectin. Since there is evidence indicating that glial scars strongly inhibit both axon growth and (re)myelination in brain lesions, it is important to understand the factors that contribute to the interaction between astrocytes and ECM proteins. Tissue Transglutaminase (TG2) is a multifunctional enzyme with an ubiquitous tissue distribution, being clearly present within the brain. It has been shown that inflammatory cytokines can enhance TG2 activity. In addition, TG2 can mediate cell adhesion and migration and it binds fibronectin with high affinity. We therefore hypothesized that TG2 is involved in astrocyte-fibronectin interactions. Our studies using primary rat astrocytes show that intracellular and cell surface expression and activity of TG2 is increased after treatment with pro-inflammatory cytokines. Astrocyte-derived TG2 interacts with fibronectin and is involved in astrocyte adhesion onto and migration across fibronectin. TG2 is involved in stimulating focal adhesion formation which is necessary for the interaction of astrocytes with ECM proteins. We conclude that astrocyte-derived TG2 contributes to the interaction between astrocytes and fibronectin. It might thereby regulate ECM remodeling and possibly glial scarring.  相似文献   

8.
Transglutaminase 2 knockout (TGase2(-/-)) mice show significantly reduced inflammation with decreased myofibroblasts in a unilateral ureteral obstruction (UUO) model, but the mechanism remains to be clarified. Nuclear factor-κB (NF-κB) activation plays a major role in the progression of inflammation in an obstructive nephropathy model. However, the key factors extending the duration of NF-κB activation in UUO are not known. In several inflammatory diseases, we and others recently found that TGase 2 plays a key role in extending NF-κB activation, which contributes to the pathogenesis of disease. In the current study, we found that NF-κB activity in mouse embryogenic fibroblasts (MEFs) from TGase2(-/-) mice remained at the control level while the NF-κB activity of wild-type (WT) MEFs was highly increased under hypoxic stress. Using the obstructive nephropathy model, we found that NF-κB activity remained at the control level in TGase2(-/-) mouse kidney tissues, as measured by COX-2 expression, but was highly increased in WT tissues. We conclude that TGase 2 gene ablation reduces the duration of NF-κB activation in ischemic injury.  相似文献   

9.
Fibronectin (FN) is a ubiquitously expressed cell adhesion protein capable of assembling into large, extended fibrillar networks as part of an extracellular matrix (ECM) that regulates cell behavior. FN is a substrate for certain members of the transglutaminase family of protein-crosslinking enzymes-enzymes which can modify the ability of FN to support cell adhesion. In this study, we have analyzed the thermo-chemical stability of plasma FN in its noncrosslinked form, and after crosslinking by transglutaminase 2 (TG2), using dynamic light scattering. We report that FN is found in a generally globular (8.7 nm hydrodynamic radius), dimerized form in aqueous solutions, but unfolds into a linear arrangement at high ionic (1 M NaCl) and chaotropic (5 M urea) environments. FN conformation remained stable after multiple heating and cooling cycles ranging from 4 to 60 degrees C. Crosslinking of FN with TG2 formed large, multimeric complexes having high chemical stability in aqueous, high ionic and chaotropic environments, demonstrating that this covalent modification stabilizes FN. Given recent data that substrate (e.g. ECM) rigidity profoundly affects cell differentiation and behavior, we further studied how TG2 crosslinking affects the molecular rigidity of FN by obtaining atomic force microscopy nanoindentation measurements from untreated and crosslinked FN samples embedded in acrylamide gels. We demonstrate that TG2-mediated crosslinking of FN significantly increases Young's modulus (of elasticity), an observation of increased rigidity having important implications with respect to the biological role of ECM protein-crosslinking in cell signaling and guiding cell differentiation.  相似文献   

10.
11.
Herein, we assessed in a particular glial cell type, called olfactory ensheathing cells (OECs), the effect of some growth factors (GFs) on tissue transglutaminase (TG2) overexpression induced by amyloid-beta (Aβ) with native full-length peptide 1–42 or by fragments, 25–35 or 35–25, as control. Previously, we demonstrated that TG2 overexpression induced by some stressors was down-regulated by GFs exposure in OECs. To monitor cell viability, an MTT test was used, while TG2 expression was examined using immunocytochemical and Western blot analysis. We also considered the involvement of the TG2-mediated apoptotic pathway. Vimentin expression was evaluated as well. Reactive oxygen species and reduced glutathione levels were utilized to test the oxidative intracellular status. Lactate dehydrogenase released into the medium, as a marker of necrotic cell death, was evaluated. We found that in OECs exposed to Aβ(1–42) or Aβ(25–35) for 24 h, TG2 expression increased, and we observed that the protein appeared prevalently localized in the cytosol. The pre-treatment with GFs, basic fibroblast growth factor (bFGF) or glial-derived neurotrophic factor (GDNF), down-regulated the TG2 level, which was prevalently limited to the nuclear compartment. Vimentin expression and caspase cleavage showed a significant enhancement in Aβ(1–42) and Aβ(25–35) exposed cells. The pre-treatment with bFGF or GDNF was able to restore the levels of the proteins to control values, and the intracellular oxidative status modified by the exposure to Aβ(1–42) or Aβ(25–35). Our data suggest that both bFGF or GDNF could be an innovative mechanism to contrast TG2 expression, which plays a key role in Alzheimer’s disease.  相似文献   

12.
Zhang J  Zhi HY  Ding F  Luo AP  Liu ZH 《Cell research》2005,15(2):105-110
Epidermal-type transglutaminase 3 (TGM3) is involved in the cross-linking of structural proteins to form the cornified envelope in the epidermis. In the present study, we detected the expression of TGM3 in the mouse embryo using RT-PCR.TGM3 mRNA is weakly presented from E11.5 to E14.5 and increases significantly from E15.5 to birth. Then we determined the spatial and temporal expression pattern of TGM3 in the skin and other organs by in situ hybridization. We found a deprivation of TGM3 in skin at E11.5, while a rich supply in periderm cells and a weak expression in basal cells from E12.5 to E14.5. From the period of E15.5 to E16.5, after keratinization in the epidermis, TGM3 was expressed in the granular and cornified layers. The electron microscopic observation of the C57BL/6J mouse limb bud skin development provided several morphological evidences for the epidermal differentiation. The above findings suggest that the expression of TGM3 plays a important role in the epidermis differentiation in embryogenesis.  相似文献   

13.
Activation of glial cells has been observed in neurodegenerative diseases including Alzheimer’s disease (AD). Aggregation of amyloid β (Aβ) is profusely observed as characteristic pathology in AD brain. In our previous study using microglial cell line BV-2, tissue-type transglutaminase (TG2) was found to be involved in phagocytosis (Kawabe et al., in Neuroimmunomodulation 22(4):243–249, 2015; Kawabe et al., Neurochem Res 2017). In the present study, we examined whether TG2 and milk fat globule EGF factor 8 protein (MFG-E8), an adaptor protein promotes macrophage to engulf apoptotic cells, were involved in Aβ endocytosis. When the neuronal/glial mixed culture was stimulated freshly prepared Aβ1?42 for 3 days, the incorporation of Aβ was observed by immunofluorescence staining technique in Iba-1-positive microglia. Cystamine, a broad competitive inhibitor of TGs, suppressed it. When aggregated Aβ was added to the mixed culture, the immunoreactivity of MFG-E8 surrounding Aβ was observed, and then followed by microglial endocytosis. Using western blotting technique, MFG-E8 was detected in cell lysate of astrocyte culture, and was also detected in the medium. When microglia culture was incubated with astrocyte conditioned medium, MFG-E8 levels in microglia tended to increase. It is likely that microglia might utilize MFG-E8 released from astrocytes as well as that expressed in themselves in order to endocytose Aβ aggregation. Furthermore, we confirmed that MFG-E8 could bind with TG2 in microglia culture by immunoprecipitate technique. These results suggest that microglia might uptake Aβ as a complex of aggregated Aβ/MFG-E8/TG2.  相似文献   

14.
Alzheimer’s disease (AD) is characterized by intracellular and extracellular protein aggregates, including microtubule-associated protein tau and cleavage product of amyloid precursor protein, β-amyloid (Aβ). Tissue transglutaminase (tTG) is a calcium-dependent enzyme that cross-links proteins forming a γ-glutamyl-ε-lysine isopeptide bond. Highly resistant to proteolysis, this bond can induce protein aggregation and deposition. We set out to determine if tTG may play a role in pathogenesis of AD. Previous studies have shown that tTG and isopeptide are increased in advanced AD, but they have not addressed if this is an early or late feature of AD. In the present study, we measured tTG expression levels and enzyme activity in the brains of individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), and AD, as well as a transgenic mouse model of AD. We found that both enzyme expression and activity were increased in MCI as well as AD compared to NCI. In the transgenic model of AD, tTG expression and enzyme activity increased sharply with age and were relatively specific for the hippocampus. We also assessed overlap of isopeptide immunoreactivity with neurodegeneration-related proteins with Western blots and found neurofilament, tau, and Aβ showed co-localization with isopeptide in both AD and transgenic mice. These results suggest that tTG might be a key factor in pathogenesis of abnormal protein aggregation in AD.  相似文献   

15.
We analyzed the protective effect of 17β-estradiol (17β-ED) injection against delayed neuronal death in the hippocampus tissue of the brain in Mongolian gerbils after transient ischemia/recirculation treatment, especially in relation with bcl-2 gene expression and enzymatic activity changes of caspase-3 and tissue transglutaminase (tTGase). Daily intraperitoneal injection of 17β-ED to the animal after the ischemia stimulated the expression of an apoptosis suppressor gene, bcl-2, in the hippocampal tissue for a week. The gradually increasing apoptotic enzyme activity of caspase-3 and increased number of TUNEL positive fragmented neuronal nuclei caused by ischemic attack in the gerbil brain were clearly suppressed by 17β-ED administration. The reduced activity and enzyme protein of tTGase, a neurodegenerative marker of apoptosis in the hippocampus after ischemia, were also restored to nearly normal levels by 17β-ED injection. These results suggest that daily 17β-ED administration to the gerbil after transient ischemic insult with progressing neuronal deteriorative changes in hippocampus tissue can effectively prevent apoptotic changes through a molecular cascade involving gene expression regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号