首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Eastern hemlock (Tsuga canadensis) is a critical species in eastern North American forests, providing a multitude of ecological and societal benefits while also acting as a foundation species in many habitats. In recent decades, however, hemlock has become threatened by hemlock woolly adelgid (HWA; Adelges tsugae), an invasive sap-feeding insect from Asia. In addition to causing the more commonly assessed metrics of foliar damage, crown decline, and hemlock mortality, HWA also decreases hemlock growth and productivity. Dendrochronological methods provide a more nuanced assessment of HWA impacts on hemlock by quantifying variable rates of radial-growth decline that follow incipient infestation. This information is necessary to better understand the variable response of hemlock to HWA, and identify the characteristics of stands with the highest potential for tolerance and recovery. To quantify decline, we calculated changes in hemlock yearly radial growth using basal area increment (BAI) measurements to identify periods of growth decline from 41 hemlock stands across New England covering a range of infestation density, duration and hemlock vigor. The onset of growth decline periods were predominantly associated with either HWA infestation or drought. However, the magnitude of change in BAI values pre- and post-decline was significantly related to HWA infestation density and crown impacts, indicating that radial growth metrics can be used to identify locations where HWA infestations have incited significant reductions in hemlock health and productivity. Additional site characteristics (slope, hillshade, and January minimum temperatures), were also significantly associated with hemlock health and productivity decline rates. In order to develop a model to identify stands likely to tolerate HWA infestation, these metrics were used to build a logit model to differentiate high- and low-BAI-reduction stands with 78% accuracy. Independent validation of the model applied to 15 hemlock sites in Massachusetts classified high and low BAI reduction classes with 80% accuracy. The model was then applied to GIS layers for New England and eastern New York to produce a spatially-explicit model that predicts the likelihood of severe hemlock growth declines if/when HWA arrives. Currently 26% of the region’s hemlock stands fall into this high risk category. Under projected climate change, this could increase to 43%. This model, along with knowledge of current HWA infestation borders, can be used to direct management efforts of potentially tolerant hemlock stands in eastern North America, with the intention of minimizing HWA-induced hemlock mortality.  相似文献   

2.
Exotic insect pests may strongly disrupt forest ecosystems and trigger major shifts in nutrient cycling, structure, and composition. We examined the relationship between these diverse effects for the hemlock woolly adelgid (HWA, Adelges tsugae Annand) in New England forests by studying its impacts on local canopy processes in stands differing in infestation levels and linking these impacts to shifts in canopy nutrient cycling and stand and landscape effects. HWA initiated major changes in canopy biomass and distribution. Whereas uninfested trees exhibit a significant decline in canopy biomass from the center to the periphery and a positive correlation between total needle litter and estimated biomass, infested trees have significantly less total canopy biomass, produce less new foliage, shed relatively more needles, and exhibit no correlation between litter and canopy biomass. Foliar N content of infested trees was 20%–40% higher than reference trees, with the strongest increase in young foliage supporting the highest densities of HWA. Foliar %C was unaffected by HWA or foliar age. Epiphytic microorganisms on hemlock needles exhibited little variation in abundance within canopies, but colony-forming units of bacteria, yeast, and filamentous fungi were 2–3 orders of magnitude more abundant on medium and heavily infested than uninfested trees. Throughfall chemistry, quantity, and spatial pattern were strongly altered by HWA. Throughfall exhibits a strong gradient beneath uninfested trees, decreasing in volumes from the canopy periphery to the trunk by more than 45%. The amount of throughfall beneath infested trees exhibits no spatial pattern, reaches 80%–90% of the bulk precipitation, and is characterized by significantly higher concentrations of nitrogen compounds, dissolved organic carbon, and cations. Across the southern New England landscape there is a strong south-to-north gradient of decreasing hemlock tree and sapling mortality and understory compositional change that corresponds to the duration of infestation. Regionally, black birch (Betula lenta L.) is profiting most from hemlock decline by significantly increasing in density and cover. These findings suggest that it is necessary to study the connections between fast/small-scale processes such as changes in nutrient cycling in tree canopies and slow/integrative processes like shifts in biogeochemieal cycling and compositional changes at forest stands and landscapes to better understand the effects of an exotic pest species like HWA on forest ecosystem structure and function.  相似文献   

3.
This study examined the relationship between eastern hemlock (Tsuga canadensis (L.) Carr.) crown condition and changes in radial growth associated with infestation by hemlock woolly adelgid Adelges tsugae (Homoptera: Adelgidae) (HWA). Tree-ring chronologies of eastern hemlock were used to develop a binomial decline index based on three consecutive years of below average growth. Radial growth decline was modeled, using logistic regression, as a function of an extensive array of tree, crown, and site variables that were collected over an 11 year period in Delaware Water Gap National Recreation Area. Some site-related variables such as site-location and aspect were significantly related to decline probabilities when considered individually. However, the total proportion of response variance accounted for was low, and the only site variable included in the final model was mean plot-level HWA infestation level. For every 1% increase in mean percent HWA infestation per plot, there was an 8% increase in the likelihood that a tree would be classified as being in decline. Tree crown variables such as live crown ratio, crown density, and the modified ZBadj index, a combination of foliage transparency and branch dieback, had the most explanatory power, both individually and in the final model. These crown variables were relatively accurate predictors of the degree of hemlock growth decline during HWA infestation.  相似文献   

4.
A geographically variable model of hemlock woolly adelgid spread   总被引:1,自引:0,他引:1  
The hemlock woolly adelgid (HWA) (Adelges tsugae) has spread through the range of eastern hemlock (Tsuga canadensis) leaving dead hemlock trees in its wake. We combined county and previously unavailable township level infestation records with geographic variables including plant hardiness zone, elevation, forest cover type, urbanization, precipitation, temperature, and hemlock range in a geographic information system to build models linking HWA spread to the structure and characteristics of the environment. We explored the connections between site variables and spread rate using quantile regression, Tobit regression, a parametric model for heterogeneous error variance, and classification and regression tree modeling. The results show that since 1990 HWA has spread at a rate closer to 12.5 km/yr rather than the 20–30 km/yr previously estimated, however spread rates vary significantly with environmental variables. County-based data show a faster rate of range expansion in the south, 15.6 km/yr, and very slow spread in the northern part of the current range of HWA. The rate of spread based on township records for Pennsylvania and north is 8.13 km/yr. Our study suggests that HWA spreads more slowly in colder areas, with a mean minimum temperature of  − 26.1°C (plant hardiness zone 5B) delineating areas of slower range expansion. HWA also spreads more slowly during cold years, those with lower than average mean January temperatures. Our analysis demonstrates the value of quantile regression, Tobit regression, and classification and regression tree models for understanding the spread of invasive, exotic insects.  相似文献   

5.
Hemlock woolly adelgid (HWA) invasion and preemptive logging practices alter the habitat structure of New England forests and may indirectly affect associated small mammal communities. Microhabitat structure was measured and small mammals were censused in eight large experimental plots to quantify these effects. The Harvard Forest long-term ecological research experiment is a replicated two-block design that includes four ~ 0.81-ha canopy treatments: (1) hemlock control, (2) hardwood control, (3) girdled Treatment, in which hemlock trees were killed by girdling in 2005 and left standing to simulate HWA invasion, and (4) logged treatment, in which trees were removed to simulate preemptive logging management practices. Nine microhabitat characteristics were measured from plot photos revealing differences among ground and canopy microhabitat structure. Small mammals were censused during high (2012) and low (2013) abundant years. Populations of common species were estimated with mark-recapture analysis. Peromyscus spp. were not affected by treatment in either year, but southern red-backed vole populations were greatest in the girdled treatments in 2012 and rarely captured in 2013. Between 6 and 9 mammal species were recorded in all treatments and species composition varied slightly. Estimated species richness was greater in girdled treatments than hemlock controls, but did not differ between girdled and logged treatments, which suggests preemptive logging is as detrimental to some small mammal species as HWA invasion. Overall, there is little evidence of a major shift in small mammal community structure in response to HWA invasion, with only minor changes in relative abundance both years.  相似文献   

6.
Understanding changes in community composition caused by invasive species is critical for predicting effects on ecosystem function, particularly when the invasive threatens a foundation species. Here we focus on dynamics of forest structure, composition and microclimate, and how these interact in southern Appalachian riparian forests following invasion by hemlock woolly adelgid, HWA, Adelges tsugae. We measured and quantified changes in microclimate; canopy mortality; canopy and shrub growth; understory species composition; and the cover and diversity in riparian forests dominated by eastern hemlock Tsuga canadensis over a period of seven years. Treatments manipulated hemlock mortality either through invasion (HWA infested stands) or girdling (GDL) hemlock trees. Mortality was rapid, with 50% hemlock tree mortality occurring after six years of invasion, in contrast to more than 50% mortality in two years following girdling. Although 50% of hemlock trees were still alive five years after infestation, leaf area lost was similar to that of girdled trees. As such, overall responses over time (changes in light transmittance, growth, soil moisture) were identical to girdled stands with 100% mortality. Our results showed different growth responses of the canopy species, shrubs and ground layer, with the latter being substantially influenced by presence of the evergreen shrub, rhododendron Rhododendron maximum. Although ground layer richness in the infested and girdled stands increased by threefold, they did not approach levels recorded in hardwood forests without rhododendron. Increased growth of co‐occurring canopy trees occurred in the first few years following hemlock decline, with similar responses in both treatments. In contrast, growth of rhododendron continued to increase over time. By the end of the study it had a 2.6‐fold higher growth rate than expected, likely taking advantage of increased light available during leaf‐off periods of the deciduous species. Increased growth and dominance of rhododendron may be a major determinant of future responses in southern Appalachian ecosystems; however, our results suggest hemlock will be replaced by a mix of Acer, Betula, Fagus and Quercus canopy genera where establishment is not limited by rhododendron.  相似文献   

7.
The objectives of this study were to quantify rates of nitrogen inputs to the forest floor, determine rates of nitrogen losses via leaching and to partition the sources of NO3 from healthy, declining, and salvage or preemptively cut eastern hemlock (Tsuga canadensis) stands in both an urban forest at the Arnold Arboretum in Boston, MA and a rural forest at Harvard Forest in Petersham, MA. Rates of nitrogen inputs (NH4 + and NO3 ) to the forest floor were 4–5 times greater, and rates of nitrogen losses via leachate were more than ten times greater, at the Arnold Arboretum compared to Harvard Forest. Nitrate that was lost via leachate at Harvard Forest came predominantly from atmospheric deposition inputs, whereas NO3 losses at the Arnold Arboretum came predominantly from nitrification. Although our study was limited to one urban and one rural site, our results suggest that current management regimes used to control the hemlock woolly adelgid (Adelges tsugae), such as salvage cutting, may be reducing nitrogen losses in urban areas due to rapid regrowth of vegetation and uptake of nitrogen by those plants. In contrast, preemptive cutting of trees in rural areas may be leading to proportionately greater losses of nitrogen in those sites, though the total magnitude of nitrogen lost is still smaller than in urban sites. Results of our study suggest that the combination of the hemlock woolly adelgid, nitrogen inputs, and management practices lead to changes in the movement and source of NO3 losses from eastern hemlock forest ecosystems.  相似文献   

8.
The eastern hemlock (Tsuga Canadensis) is declining in health and vigor in eastern North America due to infestation by an introduced insect, the hemlock woolly adelgid (Adelges isugue). Adelgid feeding activity results in the defoliation of hemlock forest canopy over several years. We investigated the application of Landsat satellite imagery and change-detection techniques to monitor the health of hemlock forest stands in northern New Jersey. We described methods used to correct effects due to atmospheric conditions and monitor the health status of hemlock stands over time. As hemlocks defoliate, changes occur in the spectral reflectance of the canopy in near infrared and red wavelengths—changes captured in the Normalized Difference Vegetation Index. By relating the differences in this index over time to hemlock defoliation on the ground, four classes of hemlock forest health were predicted across spatially heterogeneous landscapes with 82% accuracy. Using a time series of images, we are investigating temporal and spatial patterns in hemlock defoliation across the study area over the past decade. Based on the success of this methodology, we are no expanding out study to monitor hemlock health across the entire Mid-Atlantic region.  相似文献   

9.
云南丽江地区铁杉球蚜发生与环境因子的关系   总被引:1,自引:0,他引:1  
李立  卢文华 《昆虫知识》2008,45(1):83-87
铁杉球蚜Adelges tsugae Annand(Hemiptera:Adelgidae)是铁杉的主要害虫,在北美造成铁杉成片死亡。为有效地寻找控制铁杉球蚜的天敌,作者于2005年8~2006年12月,在云南省丽江地区的河源、牦牛坪、黑水河3个地点对铁杉球蚜的发生进行6次调查,统计不同树枝方位、不同树冠层次、不同取样地点、不同取样时间的铁杉球蚜的为害率。在多数情况下,铁杉北向和南向树枝上的球蚜为害率高于西向和东向;树冠下层的铁杉树枝上的球蚜为害率高于树冠上层;5月树冠上层球蚜为害率反而高于下层,树冠层次球蚜密度随着时间而变化的现象,与铁杉球蚜第2代发生高峰期相吻合。3个地点的每株树铁杉球蚜为害率平均为24.6%,河源的球蚜为害率又高于牦牛坪和黑水河。对来自3个地点的12块样地的每样地铁杉球蚜为害率与环境因子进行偏相关分析表明,坡向、年均相对湿度、年均降雨量与铁杉球蚜发生呈显著正相关。在调查铁杉球蚜的发生或采集球蚜天敌昆虫时,应在不同时间依据树枝方位和树冠层次来分别进行。在选择调查采集地点时,应以林区坡向、相对湿度、降雨量等环境因子为依据。  相似文献   

10.
A method is described to classify stands of eastern hemlock by health condition, at the landscape level, using remote sensing. The hemlock woolly adelgid has been a major cause of hemlock decline in Connecticut since 1985, resulting in varying degrees of defoliation in the region. A 1985 Landsat Thematic Mapper (TM) image was classified to develop a base line of once healthy hemlock stands. Radiance normalization and non-hemlock masking techniques were used to pre-process a 1995 TM image. Several techniques were used to transform the 1995 TM image; each was followed by cluster analysis to separate hemlocks into four levels of tree vigor. We evaluated 600 trees at 150 sites across the study area using the USFS Crown Condition Rating Guide. These field data were used to measure the accuracy of various health classification techniques. The Modified Soil Adjusted Vegetation Index-2 (MSAVI2) transform provided the best overall accuracy, 82.1%, for classifying hemlock according to tree vigor. Non-parametric statistics were used to determine if there were any significant variations in distribution of hemlock pixels by health class in association with features in the landscape. Several features were found to be statistically significant at a confidence level of 0.001. These were aspect of slope, hydrology group (infiltration rate), depth to bedrock, soil order, drainage class (hydraulic conductivity), and surface texture.  相似文献   

11.
Although a range of studies have suggested that competition plays a critical role in determining herbivore assemblages, there has been little work addressing the nature of interactions between competing invasive herbivores. We report the results of research on the hemlock woolly adelgid Adelges tsugae (‘HWA’) and elongate hemlock scale Fiorinia externa (‘EHS’), invasive herbivores that both feed on eastern hemlock (Tsuga canadensis). HWA has been linked to hemlock mortality throughout the East Coast of the US; the loss of hemlock threatens to permanently alter surrounding ecosystems. We assessed the spread and impact of both species by resurveying 142 hemlock stands across a 7,500 km2 latitudinal transect, running from coastal CT to northern MA, for HWA and EHS density as well as hemlock mortality. These stands had been previously surveyed in either 1997–1998 (CT) or 2002–2004 (MA). While the number of HWA-infested stands has increased, per-stand HWA density has substantially decreased. In contrast, EHS distribution and density has increased dramatically since 1997–1998. Hemlock mortality was much more strongly related to HWA density than to EHS density, and many stands remain relatively healthy despite an overall increase in hemlock mortality. There was a positive correlation between HWA and EHS densities in stands with low mean HWA densities, suggesting the potential for host-plant-mediated facilitation of EHS by HWA. Our findings underline the importance of research explicitly addressing interactions between competing invasive species, and of determining the potential consequences of these interactions for the invaded ecosystem.  相似文献   

12.
To examine the linkage between forest cover type, litter inputs, and patterns of net N mineralization versus the turnover of N among soil microbes, we measured both the net and gross rates of N mineralization in replicated, adjacent old-growth eastern hemlock [Tsuga canadensis(L.) Carr.] or sugar maple (Acer saccharum Marsh.) stands in upper Michigan. Mean aboveground net primary production and annual litterfall mass were significantly higher (P < 0.01) in the maple forests (870 g·m-2·y-1 and 439 g·m-2·y-1, respectively) than in the hemlock forests (480 g·m-2·y-1 and 344 g·m-2·y-1, respectively). Forest floor and coarse woody debris mass, however, were significantly lower (P < 0.05) in the maple forests (2.2 and 0.1 kg·m-2, respectively) than in the hemlock forests (2.9 and 0.2 kg·m-2, respectively). Litterfall N concentration was not significantly different (P > 0.10) between the two forest types. In situ gross rates of N mineralization were higher (P < 0.06) in the maple forests than in the hemlock forests (7.5 and 6.1 mg N·kg soil-1·d-1 respectively), but in situ net N mineralization varied independently of forest type and stand-level litterfall N concentration. Cover type–dependent differences in detritus production and detritus C quality appear to result in different N turnover rates, but the balance between gross mineralization and immobilization of N is very sensitive to within stand variability and varies at a scale smaller than cover type alone can predict. Received 3 Feburary 1999; accepted 27 August 1999.  相似文献   

13.
14.
Fifteen microsatellite markers have been isolated from western hemlock [Tsuga heterophylla (Raf.) Sarg] genomic DNA and six of these markers were optimized for use in mountain hemlock [Tsuga mertensiana (Bong) Carr.]. The mean expected heterozygosity (HE) was 0.88 and 0.89 for western hemlock and mountain hemlock, respectively. Allelic diversity was high for both hemlock species, ranging from 7 to 15 alleles per locus for western hemlock and 5–30 alleles per locus for mountain hemlock. The allelic variation identified in this project will allow monitoring of changes in genetic variation as a result of selection pressure in breeding programs.  相似文献   

15.
Tetraphleps galchanoides Ghauri (Hemiptera: Anthocoridae) nymphs were collected from hemlock woolly adelgid (HWA) Adelges tsugae Annand (Hemiptera: Adelgidae) infested Tsuga sp. in Baoxing, Sichuan, China. First and second stage nymphs collected from foliage shipped from China; were reared to adults and tested for feeding rates and host preferences. They were reared at 5, 8, 12, and 15 ± 1 °C from November to December, January to March, April, and May to June, respectively, in the quarantine laboratory at Virginia Polytechnic Institute and State University. At 8 °C, development time was 15, 20, and 40 days for the N-III, IV, and V nymphal stages, respectively. Adult males lived 83 days with a range of 21–147 days. A single adult female lived for 21 days. At 5 °C, second stage T. galchanoides nymphs consumed 0.8 HWA nymphs per day, and 2.0 HWA nymphs per day at the N-V stage. At 8 °C, consumption of HWA nymphs ranged from 1.3 to 3.4 nymphs per day for the N-III to N-V stages, respectively. Adult T. galchanoides consumed more HWA eggs than HWA adults, pine bark adelgid (PBA) Pineus strobi (Hartig) (Hemiptera: Adelgidae) adults, and eggs in no-choice tests. In choice tests with HWA eggs and PBA eggs, more HWA eggs were eaten. Adult and nymph body measurements are presented for determination of nymphal instars.  相似文献   

16.
The hemlock woolly adelgid (HWA), Adelges tsugae Annand (Hemiptera: Adelgidae), has spread rapidly across the eastern USA since its introduction from Japan 60 years ago, causing widespread mortality of both eastern hemlock [Tsuga canadensis (L.) Carrière] and Carolina hemlock [Tsuga caroliniana Engelm. (Pinaceae)]. Although HWA spread patterns have been repeatedly analyzed at regional scales, comparatively little is known about its dispersal potential within and between hemlock stands. As the small size and clonal nature of HWA make it nearly impossible to identify the source populations of dispersing individuals, we simulated intra‐stand HWA movement in the field by monitoring the movement of clumps of fluorescent powder that are slightly larger than HWA, but much easier to detect in the forest understory. Using three hemlock trees with three colors of fluorescent powder as source populations, we detected dispersal events at the farthest distances within our trapping array (400 m). However, more than 90% of dispersal events were <25 m. Dispersal patterns were similar from all three source trees and the distribution of dispersal distances in all cases could be described by lognormal probability density functions with mean dispersal distance of 12–14 m, suggesting that dispersal was relatively independent of location of source trees. In general, we documented tens of thousands of passive dispersal events in the forest understory despite the presence of a dense forest canopy. Thus, even under relatively light‐wind conditions, particles of similar dimensions to HWA are capable of intra‐stand movement, suggesting that a large population of HWA could rapidly infest other trees within several hundred meter radius, or beyond.  相似文献   

17.
It is commonly assumed that nitrogen (N) is the primary mineral resource limiting the productivity of temperate forests. Sustained inputs of N via atmospheric deposition are altering the N status of temperate forests raising the possibility that nutrients such as phosphorus (P) are increasingly limiting productivity. The objective of this study was to determine whether P availability limits tree growth alone or in combination with N. This study was conducted in two forest types common throughout the New England landscape of the northeastern United States; in sugar maple and white ash dominated stands growing on base rich parent material characterized by rapid rates of N cycling and high N availability, and in red oak–beech–hemlock dominated stands growing on base-poor parent material characterized by slow rates of N cycling and low N availability. Starting in 2004, N and P were added to replicate plots in each forest type in factorial combination at a rate of 150 and 50 kg ha−1 year−1, respectively. Diameter growth rates of all trees >10 cm DBH were measured in 2005 and 2006 using dendrometer bands and converted into units of basal area increment (BAI) and wood production. Following 2 years of fertilization, basal area increment in the sugar maple–white ash forests remained strongly N limited. Fertilization with P did not significantly increase BAI alone, although both N and P fertilization tended (P < 0.10) to increase diameter growth in white ash. Wood production in the N-fertilized plots increased by 100 g C m−2 year−1, roughly doubling production in the non-fertilized plots. In the red oak–beech–hemlock stands, there was no overall effect of N or P fertilization on BAI or wood production because BAI in some species was stimulated by fertilization with N alone (e.g., black cherry, red oak), while in other species BAI was unaffected (e.g., red maple, beech) or negatively affected by fertilization with N or P (e.g., eastern hemlock). Given that BAI in several tree species responded to fertilization with N alone and that only one species responded to P fertilization once N was added, this study suggests that decades of atmospheric N deposition have not (yet) resulted in widespread P limitation or saturation of tree demand for N.  相似文献   

18.
通过对铁杉(Tusga chinensis Pritz)-云杉(Picea retroflexac Mast)、铁杉-华山松(Pinus armardi Franch)、云南铁杉(Tusga domosa Eichler)-槭树(Acer mono Maxim)-桦木(Betula platyphylla Suk)四川主要铁杉林类型中铁杉球蚜Adelges tsugae Annand林间定株、种群随机抽样、室内饲养研究表明,铁杉球蚜在四川1年发生2代(越冬代和第1代),世代重叠,成虫营孤雌生殖。越冬代从4月上旬至第2年的4月下旬,产卵盛期在5月下旬,平均产卵量为15.58粒,1龄若虫具有滞育越夏习性;第1代从12月下旬至8月中旬,产卵盛期在3月下旬,平均产卵量为67.37粒,并可产生有翅成虫,但无转主危害现象。种群的发育与温度有相关性,温度高林分种群发育进度快于温度低林分。该虫的危害与生境有一定相关性,铁杉针阔混交林危害重于铁杉针叶林;同一树冠不同层次之间、不同方位之间危害程度差异不显著;当年受害严重的树株第2年受害不严重。  相似文献   

19.
Invasions by introduced pests can interact with other disturbances to alter forests and their functions, particularly when a dominant tree species declines. To identify changes after invasion by the insect hemlock woolly adelgid (Adelges tsugae; HWA), coinciding with severe droughts and hurricanes, this study compared tree species composition of eastern hemlock (Tsuga canadensis) forests on 11 plots before (2001) and 15 years after (2016) invasion in the southern Appalachian Mountains, USA. Losses of hemlock trees after HWA invasion were among the highest reported, with a 90% decline in density, 86% decline in basal area, and 100% mortality for individuals ≥ 60 cm in diameter. In contrast to predictions of theoretical models, deciduous tree density declined after HWA invasion, while basal area changed little, at least during the initial 15 years after invasion. Overall, forest density declined by 58%, basal area by 25%, and tree species richness by 8%. Factors additional to HWA likely exacerbating forest decline included: droughts before (1999–2001) and after HWA invasion (2006–2008); tree uprooting from hurricane-stimulated winds in 2004; pest-related declines of deciduous tree species otherwise likely benefitting from hemlock’s demise; death of deciduous trees when large hemlocks fell; and competition from aggressive understory plants including doghobble (Leucothoe fontanesiana), rosebay rhododendron (Rhododendron maximum), and Rubus spp. Models of forest change and ecosystem function should not assume that deciduous trees always increase during the first decades after HWA invasion.  相似文献   

20.
Tsuga canadensis is often considered a foundation species because of its influence on the biological and ecological processes of upland forest systems. With hemlock woolly adelgid (Adelges tsugae; HWA)-induced mortality of T. canadensis in southern Appalachian upland forests, there is a crucial need to understand the regeneration dynamics of this tree species. This research was conducted within mature T. canadensis forests of Great Smoky Mountains National Park (GSMNP) prior to widespread HWA infestation. Tsuga canadensis regeneration abundance is lower than has been reported in more northern locales, but varies widely among sites in the southern Appalachian Mountains. Ordination results suggest landscape-scale patterns of regeneration abundance that are influenced by gradients in understory Rhododendron maximum cover, soil sand and nutrient content. Regression models reinforce the observed gradients in regeneration abundance. Sites with abundant T. canadensis regeneration have less R. maximum cover, soil sand and litter depth, but more soil nutrient availability. Tsuga canadensis seedlings and saplings tend to be spatially aggregated at the 14 × 21 m plot scale. Sites with spatially aggregated seedlings and saplings have greater canopy openness and more species with gap affinity. This research elucidates associations between successful T. canadensis regeneration and site factors such as soil nutrient availability and canopy dynamics. More forest surveys are required to understand the conditions necessary for successful T. canadensis regeneration. Land managers involved in forest restoration efforts may have to utilize appropriate silvicultural techniques conjoined with R. maximum removal operations to regenerate T. canadensis in southern Appalachian upland forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号