首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
ACTH-lipid interactions were investigated by: (1) lipid-monolayer studies using several zwitterionic and anionic phospholipids and gangliosides, (2) permeability experiments by following the swelling rate of liposomes in isotonic glycerol solutions by light scattering, using liposomes of synthetic lipids and liposomes made of lipids extracted from light synaptic plasma membranes, and (3) by steady-state fluorescence anisotropy measurements on liposomes derived from light synaptic plasma membranes employing 1,6-diphenyl-1,3,5-hexatriene as fluorescent probe. (1) The monolayer experiments demonstrated an interaction with gangliosides GT1, GM1, dioleoylphosphatidic acid and phosphatidylserine, but little or no interaction with phosphatidylcholine or sphingomyelin. The interaction with monolayers of GT1 or phosphatidic acid decreased for ACTH1-13-NH2 and ACTH1-10. (2) The liposome experiments showed that 2·10?5 M ACTH1–24 increased the glycerol permeability by 20% and decreased the activation energy only when liposomes derived from light synaptic plasma membranes were used. Treatment of the liposomes with neuraminidase abolished the ACTH-induced permeability increase. (3) Steady-state fluorescence depolarization measurements revealed that ACTH1–24, ACTH1-16-NH2 and ACTH1–10 did not change the fluidity of liposomes derived from light synaptic plasma membranes as sensed by diphenylhexatriene. It is concluded that ACTH1–24 can bind to negatively charged lipids and can form an amphipathic helix aligned parallel to the membrane surface involving the N-terminal residues 1 to 12, possibly to 16. Polysialogangliosides will favorably meet the condition of a high local surface charge density under physiological circumstances. It is suggested that ACTH-ganglioside interactions will participate in ACTH-receptor interactions.  相似文献   

2.
Abstract

Isolated adrenal fasciculata cells were purified by centrifugation through a 0-50% hyperbolic gradient of PercollR. The dose-dependence and kinetics of both intracellular cyclic AMP accumulation and steroido-genesis in response to ACTH1-39 and ACTH5-24 (corticotropin-(1-39) and corticotropin-(5-24)-peptides) were determined using purified cells. The rate of intracellular cyclic AMP formation was maximal during the first five minutes after hormone addition and remained constant or fell thereafter. Therefore intracellular cyclic AMP accumulation, assessed after 5 min., was compared with steroid output after 20 min. Maximal steroidogenesis was elicited by ACTH5-24 without discerning a significant stimulation of intracellular cyclic AMP accumulation. ACTH6-24 (corticotropin-(6-24)-peptide) could completely inhibit the intracellular cyclic AMP accumulation elicited by ACTH1-39 or by ACTH5-24 at concentrations that only partially inhibited steroidogenesis.

It is possible that there are two pathways for the steroidogenic action of ACTH, one of which is obligatorily mediated by intracellular cyclic AMP, and another which involves a different mediator.  相似文献   

3.
—The protein kinase which in rat brain synaptosomal plasma membranes is responsible for the phosphorylation of a protein band B-50 (MW 48, 000) was inhibited by the behaviorally active peptide ACTH1–24 and not stimulated by cAMP. Treatment with 0.5% Triton X-100 in 75 mM-KCl solubilized 15% of the total B-50 protein kinase activity and preserved the sensitivity of the enzyme to ACTH1–24. The rate of endogenous phosphorylation of protein band B-50 was different in intact SPM, solubilized fraction and residue. cAMP stimulated the endogenous phosphorylation of the solubilized fraction in a rather general manner. The solubilized membrane material also phosphorylated B-50 proteins which were previously extracted from membranes. Column chromatography of the solubilized material over DEAE-cellulose pointed to the presence of multiple protein kinase activities from rat brain synaptosomal plasma membranes, one of which was the ACTH-sensitive B-50 protein kinase.  相似文献   

4.
Corticotropin (1–24) tetracosapeptide (ACTH1–24) induces a small but significant increase in the incorporation of radioactive leucine into trichloracetic insoluble proteins of a mouse adrenal cell line Y1. Neither cyclic AMP, nor cholera toxin or a nitrophenyl sulfenyl derivative of ACTH1–24 (NPS-ACTH1–24) have any effects.After being labelled with radioactive leucine in the presence or absence of ACTH, the cells were solbilized in 1 % sodium dodecylsulfate and subjected to 20 % sodium dodecylsulfate polyacrylamide gels electrophoresis. ACTH1–24 was found to induce a dramatic increase in the incorporation of radioactive leucine into a small peptide (MW 3500). This effect was mimicked by other steroidogenic compounds such as cholera toxin, cyclic AMP, NPS-ACTH1–24 but not by ACTH11–24, a non steroidogenic analogue of ACTH.  相似文献   

5.
H D Rees  A J Dunn  P M Iuvone 《Life sciences》1976,18(11):1333-1339
ACTH1?24, ACTH4?10, ACTH4?10(D-phe), lysine vasopressin (LVP) or an amino acid mixture were administered to mice using bilateral intraventricular injections (5×10?9 moles per mouse). Behavioral observations were made for the subsequent 85 minutes, and the incorporation of subcutaneously injected [3H]lysine into brain proteins assayed for the last 10 minutes of this period. Mice injected with ACTH1?24 showed the previously reported stretching and yawning syndrome, an effect also observed with ACTH4?10(D-phe) but less often. These same peptides also induced a pronounced increase in the proportion of time mice spent grooming. LVP caused a dramatic hyperactivity; mice so injected moved continously about the cage occasionally eating or grooming, but were never still. Injection with ACTH1?24 or ACTH4?10(D-phe), but not ACTH4?10 or LVP, caused significant increases in the incorporation of [3H]lysine into brain protein.  相似文献   

6.
Abstract

Polycationic peptides are demonstrated to interact with the membrane receptors of the adrenal cell as judged from their effect on steroidogenesis. The corticotropin fragments ACTH7-24 and ACTH11-24, when covalently dimerized at their C-termini, strongly antagonize both corticotropin- and angiotensin II -induced steroidogenesis, while dimerized ACTH1-24 behaves as a mixed agonist/antagonist. A quantitative analysis of the antagonistic potencies shows that the measured effects are consistent with the prediction that electrostatically controlled accumulation of the charged ligand at the cell surface is an important factor in the overall ligand/receptor interaction. Similar antagonizing effects of poly-L-lysine provide further support for this hypothesis.  相似文献   

7.
The capacity of the following peptides to stimulate steroidogenesis in suspensions of capsule (largely glomerulosa) and fasciculata/reticularis cells from rat adrenals was studied: ACTH1–24, ACTH1–13-amide, α-MSH, γ1-MSH, γ-MSH precursor, ACTH4–10, CLIP, and ovine and human β-lipotropin. Only α-MSH and ACTH1–13-amide stimulated glomerulosa cells alone, without effect on fasciculata/reticularis cells. Like ACTH1–24 the two samples of β-lipotropin stimulated both capsule and inner zone cell types in a similar manner. Their activity is attributable to slight ACTH1–39 contamination, as shown by HPLC fractionation. The other peptides lacked any activity. It is likely that the predicted specific glomerulosa stimulant from the pituitary closely resembles α-MSH.  相似文献   

8.
Isolated adrenal cortex cells respond to the addition of ACTH1–39 or analogs with increased production of cyclic AMP and corticosterone. It is estimated that cyclic AMP production need proceed at less than 20% of maximum to induce maximum corticosterone production. ACTH1–24, [Lys17, Lys18]ACTH1–8 amide, and ACTH1–16 amide induce a maximum rate of cyclic AMP and of corticosterone production equal to those of ACTH1–39. The relative potencies as determined by cyclic AMP and by corticosterone production are in excellent agreement. The analog, ACTH5–24, induces maximum cyclic AMP production equal to 45% of that of the natural hormone, but as predicted, induces maximum corticosterone production equal to that of ACTH1–39. The derivative, [Trp(Nps)9]ACTH1–39 induces 77% of maximum corticosterone production and less than 1% of maximum cyclic AMP production. The fragment ACTH11–24 is a competitive antagonist of ACTH1–39 for both cyclic AMP and corticosterone production. The observations on agonists, a partial agonist and a competitive antagonist are in harmony with the “second messenger” role assigned to cyclic AMP. A provisional model, based on the fit of the experimental observations to a set of equations, provides expressions of “intrinsic activity,” “receptor reserve”, “sensitivity”, and “amplification” in terms of maximum cyclic AMP production, concentration of ACTH which induces 12 maximum cyclic AMP production and concentration of cyclic AMP which induces 12 maximum corticosterone production.  相似文献   

9.
Endogenous phosphorylation of proteins from rat brain synaptosomal plasma membranes was studied in vitro. Cyclic AMP (cAMP) markedly stimulated32P incorporation in three protein bands with molecular weights of 75,000, 57,000, and 54,000, respectively. The effect of the behaviorally active peptide ACTH1–24 on this endogenous phosphorylation in vitro was studied using peptide concentrations from 10–10 to 10–4 M. In a number of protein bands, a biphasic effect of ACTH1–24 was observed: in concentrations of 10–4–10–5 M, a reduced amount of32P was found; in concentrations of 10–6–10–7 M, hardly any effect could be detected, whereas consistently at concentrations around 10–8 M, a significant decrease was again observed. The phosphoprotein bands affected by in vitro addition of ACTH1–24 were of a smaller molecular weight than those affected by in vitro addition of cAMP.  相似文献   

10.
In the rat, intracerebroventricular injection of synthetic ACTH (ACTH1–24, ACTH1–16) elevated plasma corticosterone levels and induced the display of excessive grooming behavior. The grooming response could be elicited in hypophysectomized rats without concommittant elevation of plasma corticosterone. In intact rats subcutaneous injection of ACTH1–24 and not of ACTH1–16-NH2 stimulated the release of adrenal corticosteroids, whereas no excessive grooming was observed. In contrast to the reduced effectiveness of a second icv injection of ACTH in inducing the behavioral response, no single-dose tolerance was observed for the effect of icv ACTH on the pituitary-adrenal system. Therefore it was concluded that two different central mechanisms underly the observed responses to the icv applied ACTH.  相似文献   

11.
Theophylline (theo), a known phosphodiesterase (PDE) inhibitor, was tested for its effects on ACTH1–24 regulated steroidogenesis in isolated bovine adrenal cortical cells. Theo produced a dose related inhibition of ACTH1–24 stimulated cortisol synthesis with half maximal inhibition occuring at 7 mM. Theo enhanced ACTH1–24 stimulated cellular adenosine 3′, 5′-monophosphate (cAMP) levels above that produced by ACTH1–24 alone confirming its inhibition of cAMP PDE. When tested on cAMP binding protein and cAMP-dependent protein kinase activities in cytosol prepared from bovine adrenal cortex, theo displaced 3H-cAMP binding to cAMP binding protein and inhibited cAMP-stimulated protein kinase activity. The half maximal inhibition of cAMP binding and protein kinase activity was observed at 10 and 5 mM, respectively. Inhibition of cAMP-dependent protein kinase by theo provides a possible explanation of its inhibitory effects on adrenal steroidogenesis and further implicates cAMP-dependent protein kinase in mediating ACTH stimulated steroidogenesis. Furthermore these studies suggest a novel mechanism of action for theo in addition to its known action on cAMP PDE.  相似文献   

12.
《Endocrine practice》2014,20(7):646-649
ObjectiveThe use of ovine corticotropin releasing hormone (oCRH) maximizes the diagnostic accuracy of inferior petrosal sinus sampling (IPSS) in patients with adrenocorticotropin hormone (ACTH)-dependent Cushing’s syndrome (CS). oCRH is marketed as ACTHrel and, understandably, may be confused with cosyntropin [ACTH (1-24)]. The inadvertent substitution of synthetic ACTH(1-24) for oCRH (ACTHrel) during IPSS may cause unexpected and misleading results. The aim of this report is to raise awareness of the potential confounding results created when synthetic ACTH(1-24) is mistakenly used during IPSS.MethodsWe present 3 patients treated at 3 different centers with ACTH-dependent CS in whom ACTH(1-24) was mistakenly substituted for oCRH (ACTHrel) during IPSS.ResultsIn all patients, there was an abrupt and unexpected decrease in plasma ACTH in the inferior petrosal sinus (IPS) samples after presumptive stimulation with oCRH. Re-evaluation of the patients’ pharmacy records confirmed that synthetic ACTH(1-24) had been used rather than oCRH during each procedure. Because “sandwich” immunometric assays for ACTH measure the entire pool of endogenous ACTH, the administration of synthetic ACTH(1-24) artifactually decreases the endogenous plasma ACTH(1-39) measurement by binding only to the N-terminal antibody raised against ACTH(1-17) and not to the C-terminal antibody raised against ACTH(34-39). This results in a lack of a detectable sandwich complex and explains the apparent reduction in ACTH concentration.ConclusionAn abrupt decrease in ACTH during IPSS suggests that synthetic ACTH(1-24) rather than oCRH (ACTHrel) has been administered. The labeling of oCRH as ACTHrel poses a potential patient safety problem about which endocrinologists, interventional radiologists, and pharmacists should be aware. (Endocr Pract. 2014;20: 646-649)  相似文献   

13.
We applied precise densimetry and ultrasound velocimetry methods to study the interaction of a synthetic α-helical transmembrane peptide, acetyl-K2-L24-K2-amide (L24), with model bilayer lipid membranes. The large unilamellar vesicles (LUVs) utilized were composed of a homologous series of n-saturated diacylphosphatidylcholines (PCs). PCs whose hydrocarbon chains contained from 13 to 16 carbon atoms, thus producing phospholipid bilayers of different thicknesses and gel to liquid-crystalline phase transition temperatures. This allowed us to analyze how the difference between the hydrophobic length of the peptide and the hydrophobic thickness of the lipid bilayer influences the thermodynamical and mechanical properties of the membranes. We showed that the incorporation of L24 decreases the temperature and cooperativity of the main phase transition of all LUVs studied. The presence of L24 in the bilayer also caused an increase of the specific volume and of the volume compressibility in the gel state bilayers. In the liquid crystalline state, the peptide decreases the specific volume at relatively higher peptide concentration (mole ratio L24:PC = 1:50). The overall volume compressibility of the peptide-containing lipid bilayers in the liquid-crystalline state was in general higher in comparison with pure membranes. There was, however, a tendency for the volume compressibility of these lipid bilayers to decrease with higher peptide content in comparison with bilayers of lower peptide concentration. For one lipid composition, we also compared the thermodynamical and mechanical properties of LUVs and large multilamellar vesicles (MLVs) with and without L24. As expected, a higher cooperativity of the changes of the thermodynamical and mechanical parameters took place for MLVs in comparison with LUVs. These results are in agreement with previously reported DSC and 2H NMR spectroscopy study of the interaction of the L24 and structurally related peptides with phosphatidylcholine bilayers. An apparent discrepancy between 2H NMR spectroscopy and compressibility data in the liquid crystalline state may be connected with the complex and anisotropic nature of macroscopic mechanical properties of the membranes. The observed changes in membrane mechanical properties induced by the presence of L24 suggest that around each peptide a distorted region exists that involves at least 2 layers of lipid molecules.  相似文献   

14.
Corticotrophic activity of opiate-like peptides was assessed by their ability to stimulate the formation of C21 steroids from [3H] progesterone by three-day old cultures of fetal calf adrenal cells. ACTH1–39, ACTHα1–24 and a purified preparation of pituitary ovine β-endorphin caused a marked increase in 17α and 21-hydroxylation while a preparation of pure synthetic porcine β-endorphin gave a minimal stimulation. The activity of the purified ovine β-endorphin preparation could not be accounted for by contamination by ACTH or by a synergistic action between the two peptides. The novel pituitary factor described here may be due to a contaminant of the β-endorphin peak which is different from ACTH1–39.  相似文献   

15.
Intraventricular administration of synthetic ACTH-like peptides in the rat induces excessive grooming, stretching and yawning. The present study demonstrates that induction of excessive grooming is dose-dependent and independent of the endocrine system. Structure-activity studies show that ACTH1–24, ACTH1–16-NH2, ACTH1–16, α-MSH and βp-MSH are equipotent. Although the presence of the sequence ACTH5–10 in the peptides studies seems of importance in the induction of excessive grooming, it appeared that C-terminal elongation is necessary for the expression of the activity. Administration of [D-Phe7] ACTH4–10 and [D-Phe7] ACTH1–10 results in appreciable grooming activity of the rat. However, substitution of a D-arginine at the 8 position did not alter the activity of ACTH4–10. The structure-activity relationship of these peptides on grooming activity of the rat is compared to that known for retardation of avoidance extinction. Although some similarities exist, it is concluded that the expression of excessive grooming and retardation of avoidance activity is mediated through different mechanisms.  相似文献   

16.
Substitution of tryptophan9 in ACTH1–24 by isoleucine results in complete loss of biological activity. A dose of 3.4 × 10?5 M per ml fails to stimulate corticosterone and cyclic AMP production. This analogue inhibits cyclic AMP production and corticosterone production induced by ACTH1–24 in isolated adrenal cortex cells. The I50 values for corticosterone and cyclic AMP inhibition are 2.3 × 10?6 M and 3.4 × 10?6 M respectively.  相似文献   

17.
Abstract: The neuronal growth-associated protein B-50/GAP-43 is a substrate for protein kinase C, binds to calmodulin in a calcium-independent manner, and in vitro is subject to an endogenous and chymotrypsin-mediated hydrolysis in the vicinity of the single kinase C phosphorylation site. All of these processes can be influenced by corticotrophin (ACTH). In the present study we have investigated whether these biochemical interactions involving B-50 could have common structural determinants. Chymotryptic digestion of B-50 in the presence or absence of a nonionic detergent and ACTH demonstrated that hydrolysis is potentiated by a lipid-like environment that primarily affects the protein rather than the protease or the peptide. Furthermore, this lipid dependency appears to extend to the binding of dephosphorylated B-50 to calmodulin, which appears to occur only in the presence of a nonionic detergent or lipid and the absence of calcium. A structure-activity study for ACTH-mediated inhibition of B-50 proteolysis by an endogenous protease that copurifies with B-50 in a detergent extract of synaptosomal plasma membranes showed that ACTH1–24, ACTH5–24, ACTH5–16, dynorphin, and corticostatin inhibited the conversion of rat B-50 to B-5041–226. In contrast, ACTH7–16, Org2766, and neurotensin had no detectable effect on B-50 proteolysis at concentrations of 10 and 50 µM. The results indicate that in common with effects in other B-50-containing systems, inhibition of proteolysis is related to the presence of a basic amphiphilic helix in those ACTH fragments and analogues that were inhibitory and, moreover, the presence of this motif in other peptides appears to confer inhibitory activity. The results are discussed with reference to the putative secondary structure of B-50 and changes that may take place in the presence of membrane lipids or nonionic detergents. The conclusions of this study suggest that in vitro B-50 is subject to regulation by posttranslational enzymes and binding proteins as a consequence of its ability to adapt an amphiphilic helix conformation.  相似文献   

18.
Summary Adrenocorticotropin-(1-24)-tetracosapeptide was covalently attached to tobacco mosaic virus in two different manners: (i) through a handle near the C-terminus on tyrosine-(23) and (ii) through a handle at the N-terminus on serine-(1). Compounds of type (i) with their N-terminal message sequence freely exposed on the virion surface were considerably more potent for stimulating steroidogenesis in isolated adrenocortical cells than those of type (ii) with a more congested message. Conjugates with 50 or less hormone molecules per virion were less potent per peptide unit than the free handle-substituted hormones, whereas conjugates with 150 ACTH units exhibited superpotency effects. Superpotency disappeared when the substituted virions were disaggregated into (substituted) capsomers, suggesting influences of hormone clustering and virion geometry on biological activity. Superpotent stimulation was irreversible under conditions that immediately inhibited steroidogenesis by ACTH (dilution, addition of a peptide antagonist). Thus, superpotency might be caused by superaffinity arising from a slow rate of dissociation of the conjugates from the target cell receptors. The reason for the slow dissociation rate is still unclear: possible explanations include cooperative affinity, rapid internalization of the conjugate-receptor complexes, or decreased rates of peptide degradation at the receptor site.Abbreviations ACTH1–39 adrenocorticotropin-(1–39)-nonatriacontapeptide - ACTH1–24 adrenocorticotropin-(1–24)-tetracosapeptide - ACTH6–24 adrenocorticotropin-(6–24)-nonadecapeptide - TMV tobacco mosaic virus wild strain To whom reprints should be addressed.  相似文献   

19.
The possible role of membrane sialic acid in the action of ACTH was investigated in rat adrenal cells. After treatment with neuraminidase, the cells showed a diminished steroidogenic response to ACTH while the response to cyclic AMP and dibutyryl cyclic AMP was unaffected. 11β-hydroxylation of deoxycorticosterone (DOC) was also not impaired. Dose response curves for three ACTH peptides (ACTH1–39′, ACTH1–24 and ACTH1–10) with neuraminidase treated cells suggest that sialic acid residues on the glycoproteins of the plasma membrane may either impart affinity to the plasma membrane for ACTH molecule or facilitate transmission of the signal arising from ACTH-receptor interaction to the catalytic site of adenyl cyclase.  相似文献   

20.
Ventricular administration of ACTH1–24 stimulated stretch-yawning in castrated male guinea pigs in a dose-related manner. Daily subcutaneous treatment with testosterone propionate (TP) facilitated the effects of ACTH1–24 on this response. TP given without ACTH1–24 stimulated yawning, but not stretching or combined stretch-yawning. Unlike most other species, guinea pigs did not display auto-grooming, scratching, or wet-dog shaking in response to intracranial ACTH1–24. The results suggest that testosterone may alter the sensitivity of neural mechanisms which are responsive to ACTH1–24.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号