首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Apoptosis is a common mode of programmed cell death in multicellular organisms. However, the recent observation of yeast cell death displaying the morphology of apoptosis has suggested the presence of an ancestral cell death machinery. Here we examined apoptotic features induced by reactive oxygen species (ROS) in yeast. Saccharomyces cerevisiae show typical apoptotic features upon exposure to ROS: membrane staining with annexin V and DNA fragmentation by the TUNEL assay. The detection of apoptotic features in yeast strongly support the existence of molecular machinery performing the basic pathways of apoptosis. The phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in a variety of cells. It is therefore of interest to determine whether the PI3K/PKB signaling pathway is capable of protecting yeast from apoptosis induced by ROS. We determined that PI3K/PKB is capable of significantly inhibiting ROS-evoked apoptosis in yeast. These results suggest that yeast may provide a suitable model system in which to study the apoptotic signaling pathway elicited by a variety of stimuli.  相似文献   

3.
Cho J  Lee DG 《Biochimie》2011,93(10):1873-1879
Pleurocidin (GWGSFFKKAAHVGKHVGKAALTHYL-NH2), found in skin mucous secretions of the winter flounder Pleuronectes americanus, is known to possess a high potency and broad-spectrum antimicrobial peptide without cytotoxicity. In this study, to investigate the impact of pleurocidin on apoptotic progress, we observed morphological and physiological changes in Candida albicans. In cells exposed to pleurocidin, intracellular reactive oxygen species (ROS) which is a major cause of apoptosis were increased, and hydroxyl radicals were especially a large part of ROS. The increase of ROS induced oxidative stress and mitochondrial membrane depolarization which causes release of pro-apoptotic factors. Using FITC-VAD-FMK staining, we confirmed activation of yeast metacaspases which lead to apoptosis and phosphatidylserine externalization at early stage apoptosis was observed using annexin V FITC. In addition, pleurocidin induced-apoptotic cells underwent apoptotic morphological changes, showing the reduced cell size (low FSC) and enhanced intracellular density (high SSC) in flow cytometry dot plots. Under the influence of oxidative stress, DNA and nuclei were fragmented and condensed in cells, and they were visualized by 4′,6-diamidino-2-phenylindole (DAPI) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. These apoptotic phenomena represent that oxidative stress by inducing pleurocidin must be an important factor of the apoptotic process in C. albicans.  相似文献   

4.
Studies in Drosophila and Caenorhabditis elegans have shown increased longevity with the increased free radical scavenging that accompanies overexpression of oxidant-scavenging enzymes. This study used yeast, another model for aging research, to probe the effects of overexpressing the major activity protecting against superoxide generated by the mitochondrial respiratory chain. Manganese superoxide dismutase (MnSOD) overexpression increased chronological life span (optimized survival of stationary (G0) yeast over time), showing this is a survival ultimately limited by oxidative stress. In contrast, the same overexpression dramatically reduced the replicative life span of dividing cells (the number of daughter buds produced by each newly born mother cell). This reduction in the generational life span by MnSOD overexpression was greater than that generated by loss of the major redox-responsive regulator of the yeast replicative life span, NAD+-dependent Sir2p histone deacetylase. It was also independent of the latter activity. Expression of a mitochondrially targeted green fluorescent protein in the MnSOD overexpressor revealed that the old mother cells of this overexpressor, which had divided for a few generations, were defective in segregation of the mitochondrion from the mother to daughter. Mitochondrial defects are, therefore, the probable reason that MnSOD overexpression shortens replicative life span.  相似文献   

5.
Increased reactive oxygen species (ROS) are a feature of aging cells, but little is known about when ROS generation begins as cells age. Here we show how ROS change in Saccharomyces cerevisiae cells throughout their early replicative life span using the fluorescent ROS indicator dihydroethidium (DHE), which has some specificity for the superoxide anion. Cells in a particular age range were heterogeneous with respect to their ROS burden. Surprisingly, some cells as young as 5-7 generations acquired a greatly increased level of ROS detected by DHE relative to virgin cells. By 12 generations 50% of cells had a substantial ROS burden despite being only halfway through their life span. In contrast to the wild type, cells of a sir2 mutant had lower levels of ROS reacting with DHE. Daughters from older mothers had low ROS levels, and this asymmetric distribution of ROS was SIR2-independent. Mitochondrial fragmentation also began to occur in cells after 4 generations and increased markedly as cells aged. Daughter cells regenerated normal tubular mitochondria despite the fragmentation of mitochondria in the mother cells, whereas daughters of the sir2 mutant had fragmented mitochondria at all ages.  相似文献   

6.
Du L  Yu Y  Chen J  Liu Y  Xia Y  Chen Q  Liu X 《FEMS yeast research》2007,7(6):860-865
In recent years, it has been shown that yeast, a unicellular organism, undergoes apoptosis in response to various factors. Here we demonstrate that the highly effective anticancer agent arsenic induces apoptotic process in yeast cells. Reactive oxygen species (ROS) production was observed in the process. Moreover, mitochondrial membrane potential decreased after arsenic treatment. Resistance of the rho(0) mutant strain (lacking mtDNA) to arsenic provides further evidence that this death process involves mitochondria. In addition, hypersensitivity of Deltasod1 to arsenic suggests the critical role of ROS. Cell death and DNA fragmentation decreased in a Deltayca1 deletion mutant, indicating the participation of yeast caspase-1 protein in apoptosis. The implications of these findings for arsenic-induced apoptosis are discussed.  相似文献   

7.
Recent evidence points to a strong relationship between increased mitochondrial biogenesis and increased survival in eukaryotes. Branched-chain amino acids (BCAAs) have been shown to extend chronological life span in yeast. However, the role of these amino acids in mitochondrial biogenesis and longevity in mammals is unknown. Here, we show that a BCAA-enriched mixture (BCAAem) increased the average life span of mice. BCAAem supplementation increased mitochondrial biogenesis and sirtuin 1 expression in primary cardiac and skeletal myocytes and in cardiac and skeletal muscle, but not in adipose tissue and liver of middle-aged mice, and this was accompanied by enhanced physical endurance. Moreover, the reactive oxygen species (ROS) defense system genes were upregulated, and ROS production was reduced by BCAAem supplementation. All of the BCAAem-mediated effects were strongly attenuated in endothelial nitric oxide synthase null mutant mice. These data reveal an important antiaging role of BCAAs mediated by mitochondrial biogenesis in mammals.  相似文献   

8.
Mitochondrial reactive oxygen species in cell death signaling   总被引:49,自引:0,他引:49  
Fleury C  Mignotte B  Vayssière JL 《Biochimie》2002,84(2-3):131-141
During apoptosis, mitochondrial membrane permeability (MMP) increases and the release into the cytosol of pro-apoptotic factors (procaspases, caspase activators and caspase-independent factors such as apoptosis-inducing factor (AIF)) leads to the apoptotic phenotype. Apart from this pivotal role of mitochondria during the execution phase of apoptosis (documented in other reviews of this issue), it appears that reactive oxygen species (ROS) produced by the mitochondria can be involved in cell death. These toxic compounds are normally detoxified by the cells, failing which oxidative stress occurs. However, ROS are not only dangerous molecules for the cell, but they also display a physiological role, as mediators in signal transduction pathways. ROS participate in early and late steps of the regulation of apoptosis, according to different possible molecular mechanisms. In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and Bcl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state. Furthermore, the fact that active forms of cell death in yeast and plants also involve ROS suggests the existence of an ancestral redox-sensitive death signaling pathway that has been independent of caspases and Bcl-2.  相似文献   

9.
Individual cells of the budding yeast, Saccharomyces cerevisiae, have a limited life span and undergo a form of senescence termed replicative aging. Replicative life span is defined as the number of daughter cells produced by a yeast mother cell before she ceases dividing. Replicative aging is asymmetric: a mother cell ages but the age of her daughter cells is 'reset' to zero. Thus, one or more senescence factors have been proposed to accumulate asymmetrically between mother and daughter yeast cells and lead to mother-specific replicative senescence once a crucial threshold has been reached. Here we evaluate potential candidates for senescence factors and age-associated phenotypes and discuss potential mechanisms underlying the asymmetry of replicative aging in budding yeast.  相似文献   

10.
《The Journal of cell biology》1994,127(6):1985-1993
The yeast Saccharomyces cerevisiae typically divides asymmetrically to give a large mother cell and a smaller daughter cell. As mother cells become old, they enlarge and produce daughter cells that are larger than daughters derived from young mother cells. We found that occasional daughter cells were indistinguishable in size from their mothers, giving rise to a symmetric division. The frequency of symmetric divisions became greater as mother cells aged and reached a maximum occurrence of 30% in mothers undergoing their last cell division. Symmetric divisions occurred similarly in rad9 and ste12 mutants. Strikingly, daughters from old mothers, whether they arose from symmetric divisions or not, displayed reduced life spans relative to daughters from young mothers. Because daughters from old mothers were larger than daughters from young mothers, we investigated whether an increased size per se shortened life span and found that it did not. These findings are consistent with a model for aging that invokes a senescence substance which accumulates in old mother cells and is inherited by their daughters.  相似文献   

11.
Increased replicative longevity in Saccharomyces cerevisiae because of calorie restriction has been linked to enhanced mitochondrial respiratory activity. Here we have further investigated how mitochondrial respiration affects yeast life span. We found that calorie restriction by growth in low glucose increased respiration but decreased mitochondrial reactive oxygen species production relative to oxygen consumption. Calorie restriction also enhanced chronological life span. The beneficial effects of calorie restriction on mitochondrial respiration, reactive oxygen species release, and replicative and chronological life span could be mimicked by uncoupling agents such as dinitrophenol. Conversely, chronological life span decreased in cells treated with antimycin (which strongly increases mitochondrial reactive oxygen species generation) or in yeast mutants null for mitochondrial superoxide dismutase (which removes superoxide radicals) and for RTG2 (which participates in retrograde feedback signaling between mitochondria and the nucleus). These results suggest that yeast aging is linked to changes in mitochondrial metabolism and oxidative stress and that mild mitochondrial uncoupling can increase both chronological and replicative life span.  相似文献   

12.
Suberoyl bishydroxamic acid (SBHA) is a HDAC inhibitor that can regulate many biological functions including apoptosis and proliferation in various cancer cells. Here, we evaluated the effect of SBHA on the growth of HeLa cervical cancer cells in relation to apoptosis, reactive oxygen species (ROS) and glutathione (GSH) levels. Dose-dependent inhibition of cell growth was observed in HeLa cells with an IC50 of approximately 15 μM at 72 h. SBHA also induced apoptosis in HeLa cells, as evidenced by sub-G1 cells, annexin V-FITC staining cells, activations of caspase 3 and 8, and the loss of mitochondrial membrane potential (ΔΨm). In addition, all of the tested caspase inhibitors rescued some cells from SBHA-induced HeLa cell death. SBHA increased ROS levels including O 2 ?? and induced GSH depletion in HeLa cells. Generally, caspase inhibitors did not affect ROS levels in SBHA-treated HeLa cells, but they significantly prevented GSH depletion in these cells. Furthermore, while the well-known antioxidants, N-acetyl cysteine and vitamin C, did not affect cell death, ROS level or GSH depletion in SBHA-treated HeLa cells, l-buthionine sulfoximine, a GSH synthesis inhibitor, enhanced cell death and GSH depletion in these cells. In conclusion, SBHA inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis, and the inhibition is independent of ROS level changes, but dependent on GSH level changes.  相似文献   

13.
We show that human wild-type alpha synuclein (WT alpha-syn), and the inherited mutants A53T or A30P, when expressed in the yeast Saccharomyces cerevisiae triggers events that are diagnostic of apoptosis: loss of membrane asymmetry due to the externalization of phosphatidylserine, accumulation of reactive oxygen species (ROS), and the release of cytochrome c from mitochondria. A brief heat shock was strikingly protective in that alpha-syn-expressing cells receiving a heat shock exhibited none of these apoptotic markers. Because the heat shock did not decrease the expression level of alpha-syn, a protective protein or proteins, induced by the heat shock, must be responsible for inhibition of alpha-syn-induced apoptosis. Using ROS accumulation as a marker of apoptosis, the role of various genes and various drugs in controlling alpha-syn-induced apoptosis was investigated. Treatment with geldanamycin or glutathione, overexpression of Ssa3 (Hsp70), or deletion of the yeast metacaspase gene YCA1 abolishes the ability of alpha-syn to induce ROS accumulation. Deletion of YCA1 also promotes vigorous growth of alpha-syn-expressing cells compared to cells that contain a functional copy of YCA1. These findings indicate that alpha-syn-induced ROS generation is mediated by the caspase, according to alpha-syn-->caspase-->ROS-->apoptosis. It is shown by co-immunoprecipitation that Ssa3 binds to alpha-syn in a nucleotide-dependent manner. Thus, we propose that Hsp70 chaperones inhibit this sequence of events by binding and sequestering alpha-syn.  相似文献   

14.
Aging is a degenerative process characterized by a progressive deterioration of cellular components and organelles resulting in mortality. The budding yeast Saccharomyces cerevisiae has been used extensively to study the biology of aging, and several determinants of yeast longevity have been shown to be conserved in multicellular eukaryotes, including worms, flies, and mice 1. Due to the lack of easily quantified age-associated phenotypes, aging in yeast has been assayed almost exclusively by measuring the life span of cells in different contexts, with two different life span paradigms in common usage 2. Chronological life span refers to the length of time that a mother cell can survive in a non-dividing, quiescence-like state, and is proposed to serve as a model for aging of post-mitotic cells in multicellular eukaryotes. Replicative life span, in contrast, refers the number of daughter cells produced by a mother cell prior to senescence, and is thought to provide a model of aging in mitotically active cells. Here we present a generalized protocol for measuring the replicative life span of budding yeast mother cells. The goal of the replicative life span assay is to determine how many times each mother cell buds. The mother and daughter cells can be easily differentiated by an experienced researcher using a standard light microscope (total magnification 160X), such as the Zeiss Axioscope 40 or another comparable model. Physical separation of daughter cells from mother cells is achieved using a manual micromanipulator equipped with a fiber-optic needle. Typical laboratory yeast strains produce 20-30 daughter cells per mother and one life span experiment requires 2-3 weeks.Open in a separate windowClick here to view.(75M, flv)  相似文献   

15.
Extrachromosomal rDNA circles (ERCs) and recombinant origin-containing plasmids (ARS-plasmids) are thought to reduce replicative life span in the budding yeast Saccharomyces cerevisiae due to their accumulation in yeast cells by an asymmetric inheritance process known as mother cell bias. Most commonly used laboratory yeast strains contain the naturally occurring, high copy number 2-micron circle plasmid. 2-micron plasmids are known to exhibit stable mitotic inheritance, unlike ARS-plasmids and ERCs, but the fidelity of inheritance during replicative aging and cell senescence has not been studied. This raises the question: do 2-micron circles reduce replicative life span? To address this question we have used a convenient method to cure laboratory yeast strains of the 2-micron plasmid. We find no difference in the replicative life spans of otherwise isogenic cir+ and cir0 strains, with and without the 2-micron plasmid. Consistent with this, we find that 2-micron circles do not accumulate in old yeast cells. These findings indicate that naturally occurring levels of 2-micron plasmids do not adversely affect life span, and that accumulation due to asymmetric inheritance is required for reduction of replicative life span by DNA episomes.  相似文献   

16.
Cao S  Xu W  Zhang N  Wang Y  Luo Y  He X  Huang K 《PloS one》2012,7(3):e32943
Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency.  相似文献   

17.
The mitochondrial theory of aging predicts that functional alterations in mitochondria leading to reactive oxygen species (ROS) production contribute to the aging process in most if not all species. Using cellular senescence as a model for human aging, we have recently reported partial uncoupling of the respiratory chain in senescent human fibroblasts. In the present communication, we address a potential cause-effect relationship between impaired mitochondrial coupling and premature senescence. Chronic exposure of human fibroblasts to the chemical uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) led to a temporary, reversible uncoupling of oxidative phosphorylation. FCCP inhibited cell proliferation in a dose-dependent manner, and a significant proportion of the cells entered premature senescence within 12 days. Unexpectedly, chronic exposure of cells to FCCP led to a significant increase in ROS production, and the inhibitory effect of FCCP on cell proliferation was eliminated by the antioxidant N-acetyl-cysteine. However, antioxidant treatment did not prevent premature senescence, suggesting that a reduction in the level of oxidative phosphorylation contributes to phenotypical changes characteristic of senescent human fibroblasts. To assess whether this mechanism might be conserved in evolution, the influence of mitochondrial uncoupling on replicative life span of yeast cells was also addressed. Similar to our findings in human fibroblasts, partial uncoupling of oxidative phsophorylation in yeast cells led to a substantial decrease in the mother-cell-specific life span and a concomitant incrase in ROS, indicating that life span shortening by mild mitochondrial uncoupling may represent a "public" mechanism of aging.  相似文献   

18.
The presence of P2X7 on erythroid cells is well established, but its physiological role remains unclear. The current study aimed to determine if P2X7 activation induces reactive oxygen species (ROS) formation in murine erythroleukaemia (MEL) cells, a commonly used erythroid cell line. ATP induced ROS formation in a time- and concentration-dependent fashion. The most potent P2X7 agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP, but not UTP or ADP, also induced ROS formation. The P2X7 antagonist, A-438079, impaired ATP-induced ROS formation. The ROS scavenger, N-acetyl-l-cysteine, and the ROS inhibitor, diphenyleneiodonium, also impaired P2X7-induced ROS formation, but use of enzyme-specific ROS inhibitors failed to identify the intracellular source of P2X7-induced ROS formation. P2X7-induced ROS formation was impaired partly by physiological concentrations of Ca2+ and Mg2+ and almost completely in cells in N-methyl-d-glucamine chloride medium. The p38 MAPK inhibitors SB202190 and SB203580, and the caspase inhibitor Z-VAD-FMK, but not N-acetyl-l-cysteine, impaired P2X7-induced MEL cell apoptosis. ATP also stimulated p38 MAPK and caspase activation, both of which could be impaired by A-438079. In conclusion, these findings indicate that P2X7 activation induces ROS formation in MEL cells and that this process may be involved in events downstream of P2X7 activation, other than apoptosis, in erythroid cells.  相似文献   

19.
Du L  Su Y  Sun D  Zhu W  Wang J  Zhuang X  Zhou S  Lu Y 《FEMS yeast research》2008,8(4):531-539
Formic acid disrupts mitochondrial electron transport and sequentially causes cell death in mammalian ocular cells by an unidentified molecular mechanism. Here, we show that a low concentration of formic acid induces apoptosis-like cell death in the budding yeast Saccharomyces cerevisiae, with several morphological and biochemical changes that are typical of apoptosis, including chromatin condensation, DNA fragmentation, externalization of phosphatidylserine, reactive oxygen species (ROS) production, loss of mitochondrial membrane potential and mitochondrion destruction. This process may not be dependent on the activation of Yca1p, the yeast caspase counterpart. In addition, the cell death induced by formic acid is associated with ROS burst,while intracellular ROS accumulate more rapidly and to a higher level in the YCA1 disruptant than in the wild-type strain during the progression of cell death. Our data indicate that formic acid induces yeast apoptosis via an Yca1p-independent pathway and it could be used as an extrinsic inducer for identifying the regulators downstream of ROS production in yeast.  相似文献   

20.
Although a lot of effort has been put into the search for factors responsible for aging in yeast mother cells, our knowledge of cellular changes in daughter cells originating from old mothers is still very limited. It has been shown that an old mother is not able to compensate for all negative changes within its cell and therefore transfers them to the bud. In this paper, we show for the first time that daughter cells of an old mother have a reset lifespan expressed in units of time despite drastic reduction of their budding lifespan, which suggests that a single yeast cell has a fixed programmed longevity regardless of the time point at which it was originated. Moreover, in our study we found that longevity parameters are not correlated with the rDNA level, DNA damage, chromosome structure or aging parameters (budding lifespan and total lifespan).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号