首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 857 毫秒
1.
Since reactive oxygen species (ROS) play a key role in carcinogenesis, many studies have focused on the chemopreventive activities of naturally occurring antioxidants. However, the possibility that different antioxidants in food exert opposing effects on carcinogenesis has not been adequately investigated. Gap-junction intercellular communication (GJIC), which is strongly related to carcinogenesis (particularly the tumor promotion stage), may be a suitable model for investigating the tumor-promoting and antitumor-promoting effects of phytochemicals. The present study investigated the possible combined effects of resveratrol and gallic acid (GA), which are major antioxidants in red wine, on GJIC in WB-F344 rat liver epithelial (RLE) cells. GA at 100 microM, but not resveratrol, inhibited GJIC and generated hydrogen peroxide. The GA-induced inhibition of GJIC was recovered by resveratrol, but only partially recovered by catalase. Resveratrol did not attenuate GA-induced generation of hydrogen peroxide, but it did block GA-induced phosphorylation of connexin 43 (Cx43), a key modulator of GJIC. Furthermore, resveratrol down-regulated GA-induced phosphorylation of extracellular signal-regulated kinase (ERK)1/2, one of the critical regulators of Cx43. However, catalase partially blocked the GA-induced phosphorylation of Cx43 and ERK1/2. Collectively, these findings suggest that the combined effects of red wine phenolic phytochemicals on GJIC and antioxidants differ in ROS-mediated carcinogenesis depending on their dosages and structures.  相似文献   

2.
Although the health benefits of dietary antioxidants have been extensively studied, their potential negative effects remain unclear. L-Ascorbic acid 6-palmitate (AAP), a synthetic derivative of ascorbic acid (AA), is widely used as an antioxidant and preservative in foods, vitamins, drugs, and cosmetics. Previously, we found that AA exerted an antitumor effect by protecting inhibition of gap-junctional intercellular communication (GJIC), which is closely associated with tumor progression. In this study, we examined whether AAP, an amphipathic derivative of AA, has chemopreventive effects using a GJIC model. AAP and AA exhibited dose-dependent free radical-scavenging activities and inhibited hydrogen peroxide (H2O2)-induced intracellular reactive oxygen species (ROS) production in normal rat liver epithelial cells. Unexpectedly, however, AAP did not protect against the inhibition of GJIC induced by H2O2; instead, it inhibited GJIC synergistically with H2O2. AAP inhibited GJIC in a dose-dependent and reversible manner. This inhibitory effect was not due to the conjugated lipid structure of AAP, as treatment with palmitic acid alone failed to inhibit GJIC under the same conditions. The inhibition of GJIC by AAP was restored in the presence of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor U0126, but not in the presence of other signal inhibitors and antioxidant (PKC inhibitors, EGFR inhibitor, NADPH oxidase inhibitor, catalase, vitamin E, or AA), indicating the critical involvement of MEK signaling in the GJIC inhibitory activity of AAP. Phosphorylation of ERK and connexin 43 (Cx43) was observed following AAP treatment, and this was reversed by U0126. These results suggest that the AAP-induced inhibition of GJIC is mediated by the phosphorylation of Cx43 via activation of the MEK–ERK pathway. Taken together, our results indicate that AAP has a potent carcinogenic effect, and that the influence of dietary antioxidants on carcinogenesis may be paradoxical.  相似文献   

3.
4.
The mechanism by which 18beta-glycyrrhetinic acid regulates gap junction intercellular communication (GJIC) remains poorly understood. In this study, treatment of cultured rat neonatal cardiomyocytes with 18beta-glycyrrhetinic acid resulted in dose-dependent inhibition of GJIC as assessed by fluorescent dye transfer analysis. 18beta-Glycyrrhetinic acid induced time-dependent serine/threonine dephosphorylation and redistribution of connexin43 (Cx43) in cardiomyocytes and the induced Cx43 dephosphorylation was prevented by the protein phosphatase inhibitor, calyculin A. However, functional analyses showed that the inhibitory effect of 18beta-glycyrrhetinic acid on dye spreading among cardiomyocytes was not blocked by calyculin A, but was blocked by the Src-selective tyrosine kinase inhibitor, PP2. 18beta-Glycyrrhetinic acid also induced an increase in the levels of phosphorylated Src, and this effect was prevented by PP2. Immunoprecipitation using anti-Cx43 and anti-p-Src antibodies showed that 18beta-glycyrrhetinic acid increased the association between p-Src and Cx43 and induced tyrosine phosphorylation of Cx43. We conclude that the inhibitory effect of 18beta-glycyrrhetinic acid on GJIC in cardiomyocytes involves Src-mediated tyrosine phosphorylation of Cx43.  相似文献   

5.
Intercellular communication through gap junctions (GJIC) plays an essential role in maintaining the functional integrity of vascular endothelium. Despite emerging evidence suggests that (−)-Epigallocatechin gallate (EGCG) may improve endothelial function. However, its effect on Cx43 gap junction in endothelial cells remains unexplored. Here we investigated the effect of EGCG on connexin43 (Cx43) gap junction in endothelial cells. The levels of Cx43 protein in human umbilical vein endothelial cells (HUVECs) cultured under serum-deprivation 48 h decreased about 50%, accompanied by decreased GJIC. This reduction can be reversed by treatments with EGCG. In addition, EGCG activated ERK, P38, and JNK mitogen-activated protein kinases (MAPKs), which were supposed to participate in the regulation of Cx43. A MEK inhibitor PD98059, but not SB203580 (a p38 kinase inhibitor) or SP600125 (a JNK kinase inhibitor), abolished the effects of EGCG on Cx43 expression and GJIC. Moreover, although both Akt and eNOS phosphorylation were time-dependently augmented by EGCG, neither PI3K inhibitor LY294002 nor eNOS inhibitor L-NAME blocked the effects of EGCG on Cx43 gap junctions. Thus, EGCG attenuated Cx43 down-regulation and impaired GJIC induced by serum deprivation, ERK MAPK Signal transduction pathway appears to be involved in these processes.  相似文献   

6.
Endothelin-1 (ET-1) is overexpressed in ovarian carcinoma and acts as an autocrine factor selectively through the ETA receptor (ETAR) to promote tumor cell proliferation, survival, neovascularization, and invasiveness. Loss of gap junctional intercellular communication (GJIC) is critical for tumor progression by allowing the cells to escape growth control. Exposure of HEY and OVCA 433 ovarian carcinoma cell lines to ET-1 led to a 50-75% inhibition in intercellular communication and to a decrease in the connexin 43 (Cx43)-based gap junction plaques. To investigate the phosphorylation state of Cx43, ovarian carcinoma cell lysates were immunoprecipitated and transient tyrosine phosphorylation of Cx43 was detected in ET-1-treated cells. BQ 123, a selective ETAR antagonist, blocked the ET-1-induced Cx43 phosphorylation and cellular uncoupling. Gap junction closure was prevented by tyrphostin 25 and by the selective c-Src inhibitor, PP2. Furthermore, the increased Cx43 tyrosine phosphorylation was correlated with ET-1-induced increase of c-Src activity, and PP2 suppressed the ET-1-induced Cx43 tyrosine phosphorylation, indicating that inhibition of Cx43-based GJIC is mainly mediated by the Src tyrosine kinase pathway. In vivo, the inhibition of human ovarian tumor growth in nude mice induced by the potent ETAR antagonist, ABT-627, was associated with a reduction of Cx43 phosphorylation. These findings indicate that the signaling mechanisms involved in GJIC disruption on ovarian carcinoma cells depend on ETAR activation, which leads to the Cx43 tyrosine phosphorylation mediated by c-Src, suggesting that ETAR blockade may contribute to the control of ovarian carcinoma growth and progression also by preventing the loss of GJIC.  相似文献   

7.
Docosahexaenoic acid (22: 6n-3; DHA) is a long chain polyunsaturated fatty acid that exists highly enriched in fish oil, and it is one of the low molecular weight food chemicals which can pass a blood brain barrier. A preliminary survey of several fatty acids for expression of growth-associated protein-43 (GAP-43), a marker of axonal growth, identified DHA as one of the most potent inducers. The human neuroblastoma SH-SY5Y cells exposed to DHA showed significant and dose-dependent increases in the percentage of cells with longer neurites. To elucidate signaling mechanisms involved in DHA-enhanced basal neuritogenesis, we examined the role of extracellular signal-regulated kinase (ERK)1/2 and intracellular reactive oxygen species (ROS) production using SH-SY5Y cells. From immunoblotting experiments, we observed that DHA induced the ROS production, protein tyrosine phosphatase inhibition, mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) phosphorylation, and sequentially ERK1/2 phosphorylation, the last of which was significantly reduced by MEK inhibitor U0126. Both antioxidants and MEK inhibitor affected DHA-induced GAP-43 expression, whereas the specific PI3K inhibitor LY294002 did not. We found that total protein tyrosine phosphatase activity was also downregulated by DHA treatment, which was counteracted by antioxidant pretreatment. These results suggest that the ROS-dependent ERK pathway, rather than PI3K, plays an important role during DHA-enhanced neurite outgrowth.  相似文献   

8.
HYS-32 [4-(3,4-dimethoxyphenyl)-3-(naphthalen-2-yl)-2(5H)-furanone] is a new analogue of the anti-tumor compound combretastatin A-4 containing a cis-stilbene moiety. In this study, we investigated its effects on Cx43 gap junction intercellular communication (GJIC) and the signaling pathway involved in rat primary astrocytes. Western blot analyses showed that HYS-32 dose- and time-dependently upregulated Cx43 expression. A confocal microscopic study and scrape-loading/dye transfer analyses demonstrated that HYS-32 (5 μM) induced microtubule coiling, accumulation of Cx43 in gap junction plaques, and increased GJIC in astrocytes. The HYS-32-induced microtubule coiling and Cx43 accumulation in gap junction plaques was reversed when HYS-32 was removed. Treatment of astrocytes with cycloheximide resulted in time-dependent degradation of by co-treatment with HYS-32 by increasing the half-life of Cx43. Co-treatment with HYS-32 also prevented the LPS-induced downregulation of Cx43 and inhibition of GJIC in astrocytes. HYS-32 induced activation of PKC, ERK, and JNK, and co-treatment with the PKC inhibitor Go6976 or the ERK inhibitor PD98059, but not the JNK inhibitor SP600125, prevented the HYS-32-induced increase in Cx43 expression and GJIC. Go6976 suppressed the HYS-32-induced PKC phosphorylation and increase in phospho-ERK levels, while PD98059 did not prevent the HYS-32-induced increase in phospho-PKC levels, suggesting that PKC is an upstream effector of ERK. In conclusion, our results show that HYS-32 increases the half-life of Cx43 and enhances Cx43 expression and GJIC in astrocytes via a PKC–ERK signaling cascade. These novel biological effects of HYS-32 on astrocyte gap junctions support its potential for therapeutic use as a protective agent for the central nervous system.  相似文献   

9.
Gap junctions (GJs) exhibit a complex modus of assembly and degradation to maintain balanced intercellular communication (GJIC). Several growth factors, including vascular endothelial growth factor (VEGF), have been reported to disrupt cell–cell junctions and abolish GJIC. VEGF directly stimulates VEGF-receptor tyrosine kinases on endothelial cell surfaces. Exposing primary porcine pulmonary artery endothelial cells (PAECs) to VEGF for 15 min resulted in a rapid and almost complete loss of connexin43 (Cx43) GJs at cell–cell appositions and a concomitant increase in cytoplasmic, vesicular Cx43. After prolonged incubation periods (60 min), Cx43 GJs reformed and intracellular Cx43 were restored to levels observed before treatment. GJ internalization correlated with efficient inhibition of GJIC, up to 2.8-fold increased phosphorylation of Cx43 serine residues 255, 262, 279/282, and 368, and appeared to be clathrin driven. Phosphorylation of serines 255, 262, and 279/282 was mediated by MAPK, whereas serine 368 phosphorylation was mediated by PKC. Pharmacological inhibition of both signaling pathways significantly reduced Cx43 phosphorylation and GJ internalization. Together, our results indicate that growth factors such as VEGF activate a hierarchical kinase program—including PKC and MAPK—that induces GJ internalization via phosphorylation of well-known regulatory amino acid residues located in the Cx43 C-terminal tail.  相似文献   

10.
Gap junction channels are made of a family proteins called connexins. The best-studied type of connexin, Connexin43 (Cx43), is phosphorylated at several sites in its C-terminus. The tumor-promoting phorbol ester TPA strongly inhibits Cx43 gap junction channels. In this study we have investigated mechanisms involved in TPA-induced phosphorylation of Cx43 and inhibition of gap junction channels. The data show that TPA-induced inhibition of gap junction intercellular communication (GJIC) is dependent on both PKC and the MAP kinase pathway. The data suggest that PKC-induced activation of MAP kinase partly involves Src-independent trans-activation of the EGF receptor, and that TPA-induced shift in SDS-PAGE gel mobility of Cx43 is caused by MAP kinase phosphorylation, whereas phosphorylation of S368 by PKC does not alter gel migration of Cx43. We also show that TPA, in addition to phosphorylation of S368, also induces phosphorylation of S255 and S262, in a MAP kinase-dependent manner. The data add to our understanding of the molecular mechanisms involved in the interplay between signaling pathways in regulation of GJIC.  相似文献   

11.
Epidermal growth factor (EGF) has been found to induce enhanced gap junctional intercellular communication (GJIC) in the human kidney epithelial cell line K7. This is in contrast to what is reported for other cell types, which all show decreased GJIC in response to EGF. In the present study it is shown that 12-O-tetradecanoylphorbol-13-acetate (TPA) and EGF induce similar phosphorylation pattern of the gap junction protein connexin43 (Cx43) in K7 cells, although their effects on GJIC are opposite. Tyrosine phosphorylation of a 42 kD protein was observed to be induced concomitantly with phosphorylation of Cx43. EGF was however found to induce only serine phosphorylation of Cx43, indicating that the tyrosine kinase activity of the EGF receptor was not directly affecting the gap junction protein. The 42 kD protein phosphorylated on tyrosine was identified to be a mitogen activated protein (MAP) kinase. Both EGF and TPA was found to activate MAP kinase in these cells. Phosphorylation of Cx43 and enhancement of GJIC in response to EGF occurred with difference in time course. Phosphorylation of Cx43 was completed within 15 min, while the enhanced GJIC appeared 2-3 h later. It is therefore possible that regulation of synthesis or transport of Cx43 is responsible for the increase in GJIC, rather than direct involvement of Cx43 phosphorylation. This is in support of our previous finding that protein synthesis is necessary for EGF induced upregulation of GJIC in K7 cells.  相似文献   

12.
Chaga mushroom (Inonotus obliquus) has continued to receive attention as a folk medicine with indications for the treatment of cancers and digestive diseases. The anticarcinogenic effect of Chaga mushroom extract was investigated using a model system of gap junctional intercellular communication (GJIC) in WB-F344 normal rat liver epithelial cells. The cells were pre-incubated with Chaga mushroom extracts (5, 10, 20 microg/ml) for 24 h and this was followed by co-treatment with Chaga mushroom extracts and TPA (12-O-tetradecanoylphorbol-13-acetate, 10 ng/ml) for 1 h. The inhibition of GJIC by TPA (12-O-tetradecanoylphorbol-13-acetate), promoter of cancer, was prevented with treatment of Chaga mushroom extracts. Similarly, the increased phosphorylated ERK1/2 and p38 protein kinases were markedly reduced in Chaga mushroom extracts-treated cells. There was no change in the JNK kinase protein level, suggesting that Chaga mushroom extracts could only block the activation of ERK1/2 and p38 MAP kinase. The Chaga mushroom extracts further prevented the inhibition of GJIC through the blocking of Cx43 phosphorylation. Indeed cell-to-cell communication through gap junctional channels is a critical factor in the life and death balance of cells because GJIC has an important function in maintaining tissue homeostasis through the regulation of cell growth, differentiation, apoptosis and adaptive functions of differentiated cells. Thus Chaga mushroom may act as a natural anticancer product by preventing the inhibition of GJIC through the inactivation of ERK1/2 and p38 MAP kinase.  相似文献   

13.
Endocrine-disrupting chemicals are exogenous compounds that mimic or inhibit the action of estrogens or other hormones. Nonylphenol, an environmental contaminant distributed along the St. Lawrence River, has been reported to act as a weak estrogen. Previous studies from our laboratory have shown that rats that were fed fish taken from nonylphenol contaminated sites have altered spermatogenesis and decreased sperm count. The mechanism responsible for this effect is unknown. Gap junctional intercellular communication (GJIC) in the testis is critical for coordinating spermatogenesis. The objectives of the study were to determine the effects of nonylphenol on GJIC and connexin 43 (Cx43) in a murine Sertoli cell line, TM4. Cells were exposed for 24 h to different concentrations (1 to 50 microM) of either nonylphenol or 17beta-estradiol. GJIC was determined using a microinjection approach in which Lucifer yellow was injected directly into a single cell, and GJIC was assessed 3 min postinjection. Nonylphenol exposure decreased GJIC between adjacent cells by almost 80% relative to controls. A significant concentration-dependent reduction in GJIC was observed at nonylphenol concentrations between 1 and 50 microM. Cx43 immunofluorescent staining was reduced at both 10 and 50 microM doses of nonylphenol. Cx43 phosphorylation, as determined by Western blot analysis, was reduced at both 10 and 50 microM concentrations, which may explain, at least in part, the inhibition of GJIC. In contrast, no effect on GJIC or Cx43 protein was observed in cells exposed to 17beta-estradiol at these concentrations. Cx43 has been reported to be phosphorylated via the p38-mitogen-activated protein kinase (MAPK) pathway. P38-MAPK activity was assessed in both control and nonylphenol-exposed cells. A dose-dependent decrease in p38-MAPK activity was observed in nonylphenol-exposed Sertoli cells. Protein kinase C activity was also measured and was not influenced by nonylphenol. These results suggest that nonylphenol inhibits GJIC between Sertoli cells and that this is modulated via nonestrogenic pathways.  相似文献   

14.
The effects of extremely low frequency (ELF) magnetic field on gap junctional intercellular communication (GJIC), protein levels, and phosphorylation of connexin43 (Cx43) were studied in NIH3T3 cells. The suppression of GJIC by 24 h, 50 Hz, 0.8 mT ELF magnetic field, 2 h, 3 ng/ml 12-O-tetradecanoylphorbol-13-acetate (TPA), or ELF combined with TPA treatment was confirmed by the fluorescence recovery after photobleaching (FRAP) analysis with a confocal microscope. The results showed that ELF or TPA exposure induced 50-60% inhibition of GJIC (P < 0.01). ELF combined with TPA enhanced the inhibition of GJIC. Western blot analysis using Cx43 specific antibodies showed obviously decreasing non phosphorylated Cx43 (P(0)) induced by ELF and/or TPA exposure. On the other hand, cells treated with ELF and/or TPA displayed a hyperphosphorylated Cx43 band (P(3)). However, there was no obvious changes in the level of Cx43 protein. The results implied that the P(3) band appeared to result from phosphorylation of P(0). But it remains possible that upon the ELF exposure P(0) is converted to P(1), P(2) or both and that P(3) is formed from P(1) or P(2) resulting in the observed hyperphosphorylation pattern. From the present study, we conclude that ELF magnetic field inhibits GJIC and the main mechanism is the hyperphosphorylation of Cx43.  相似文献   

15.
Ultraviolet A (UVA) (320-400 nm)radiation is known to cause cutaneous aging and skin cancer. We studiedthe effect of UVA (365 nm) radiation on the human epidermis by focusingon keratinocyte gap junction-mediated intercellular communication(GJIC). We observed a dose-dependent 10-fold decrease in GJIC inducedby UVA in normal human keratinocytes. This decrease in GJIC wasassociated with time-dependent internalization of connexin43 (Cx43).UVA radiation also damaged the actin cytoskeleton, as shown bymicrofilament disappearance. Importantly, the decrease in GJIC wastransient when keratinocytes were irradiated with 10 J/cm2UVA, with a return to baseline values after 8 h. Concomitantly, Cx43 was relocalized and the actin cytoskeleton was restored. UVAirradiation and 12-O-tetradecanoylphorbol 13-acetate (TPA) treatment activated protein kinase C and reduced GJIC. However, Cx43localization and phosphorylation were differently regulated by the twotreatments. This suggests that at least two different pathways maymediate the observed fall in GJIC. These findings identify keratinocyteGJIC as a new UVA target that might sensitize human skin to photoagingand cancer formation.

  相似文献   

16.
Exposure of rat liver epithelial cells to doxorubicin, an anthraquinone derivative widely employed in cancer chemotherapy, led to a dose-dependent decrease in gap junctional intercellular communication (GJC). Gap junctions are clusters of inter-cellular channels consisting of connexins, the major connexin in the cells used being connexin-43 (Cx43). Doxorubicin-induced loss of GJC was mediated by activation of extracellular signal-regulated kinase (ERK)-1 and ERK-2, as demonstrated using inhibitors of ERK activation. Furthermore, activation of the epidermal growth factor (EGF) receptor by doxorubicin was responsible for ERK activation and the subsequent attenuation of GJC. Inhibition of GJC, however, was not by direct phosphorylation of Cx43 by ERK-1/2, whereas menadione, a 1,4-naphthoquinone derivative that was previously demonstrated to activate the same EGF receptor-dependent pathway as doxorubicin, resulting in downregulation of GJC, caused strong phos-phorylation of Cx43 at serines 279 and 282. Thus, ERK-dependent downregulation of GJC upon exposure to quinones may occur both by direct phosphorylation of Cx43 and in a phosphorylation-independent manner.  相似文献   

17.
The gap junction protein, Cx43, plays a pivotal role in coupling cells electrically and metabolically, and the putative phosphorylation sites that modulate its function are reflected as changes in gap junction communication. Growth factor stimulation has been correlated with a decrease in gap junction communication and a parallel activation of ERK1/2; the inhibition of epidermal growth factor (EGF)-induced Cx43 gap junction uncoupling was observed by using the MEK1/2 inhibitor, PD98059. Because 1) BMK1/ERK5, another MAPK family member also activated by growth factors, possesses a phosphorylation motif similar to ERK1/2, and 2) it has been reported that PD98059 can inhibit not only MEK1/2-ERK1/2 but also MEK5-BMK1 activation, we investigated whether BMK1 can regulate EGF-induced Cx43 gap junction uncoupling and phosphorylation, comparing this to the role of ERK1/2 on Cx43 function and phosphorylation induced by EGF. Selective activation or inactivation of ERK1/2 by using a constitutively active form or a dominant negative form of MEK1 did not regulate Cx43 gap junction coupling. In contrast, we found that BMK1, selectively activated by constitutively active MEK5alpha, induced gap junction uncoupling, and the inhibition of BMK1 activation by transfection of dominant negative BMK1 prevented EGF-induced gap junction uncoupling. Activated BMK1 selectively phosphorylates Cx43 on Ser-255 in vitro and in vivo, but not on S279/S282, which are reported as the consensus phosphorylation sites for MAPK. Furthermore, by co-immunoprecipitation, we found that BMK1 directly associates with Cx43 in vivo. These data indicate that BMK1 is more important than ERK1/2 in EGF-mediated Cx43 gap junction uncoupling by association and Cx43 Ser- 255 phosphorylation.  相似文献   

18.
Astrocytes are extensively coupled through gap junctions (GJs) that are composed of channels mostly constituted by connexin43 (Cx43). This astroglial gap junctional intercellular communication (GJIC) allows propagation of ions and signaling molecules critical for neuronal activity and survival. It is drastically inhibited by a short-term exposure to endothelin-1 (ET-1) or to sphingosine-1-phosphate (S1P), both compounds being inflammatory mediators acting through activation of GTP-binding protein-coupled receptors (GPCRs). Previously, we have identified the GTPases G(i/o) and Rho as key actors in the process of S1P-induced inhibition. Here, we asked whether similar mechanisms underlied the effects of ET-1 and S1P by investigating changes in the phosphorylation status of Cx43 and in the molecular associations of Cx43 with zonula occludens (ZO) proteins and occludin. We showed that the inhibitory effect of ET-1 on GJIC was entirely dependent on the activation of G(i/o) but not on Rho and Rho-associated kinase. Both ET-1 and S1P induced dephosphorylation of Cx43 located at GJs through a process mediated by G(i/o) and calcineurin. Thanks to co-immunoprecipitation approaches, we found that a population of Cx43 (likely junctional Cx43) was associated to ZO-1-ZO-2-occludin multiprotein complexes and that acute treatments of astrocytes with ET-1 or S1P induced a G(i/o)-dependent increase in the amount of Cx43 linked to these complexes. As a whole, this study identifies a new mechanism of GJIC regulation in which two GPCR agonists dynamically alter interactions of Cx43 with its molecular partners.  相似文献   

19.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent inhibitor of gap junctional intercellular communication (GJIC). This inhibition requires activation of protein kinase C (PKC), but the events downstream of this kinase are not known. Since PKC can activate extracellular signal regulated kinases (ERKs) and these also downregulate GJIC, we hypothesized that the inhibition of GJIC by TPA involved ERKs. TPA treatment (10 ng/ml for 30 min) of WB-F344 rat liver epithelial cells strongly activated p42 and p44 ERK-1 and -2, blocked gap junction-mediated fluorescent dye-coupling, and induced connexin43 hyperphosphorylation and gap junction internalization. These effects were completely prevented by inhibitors of PKC (bis-indolylmaleimide I; 2 microM) and ERK activation (U-0126; 10 microM). These data suggest that ERKs are activated by PKC in response to TPA treatment and are downstream mediators of the gap junction effects of the phorbol ester.  相似文献   

20.
The ability of a non-commercial immobilized Staphylococcus xylosus lipase to catalyze the esterification of propanol with gallic acid was investigated and the antioxidant as well as the antimicrobial activities of the ester formed were evaluated. The response surface methodology, based on a three variables Box–Behnken design (reaction temperature, enzyme amount and 1-propanol/gallic acid molar ratio), was used to optimize the experimental conditions of propylgallate synthesis. The maximum conversion yield (90% ±3.5) was obtained by using 400 IU of immobilized lipase and a propanol/gallic acid at a molar ratio of 160 at 52 °C. The obtained ester was characterized by spectroscopic methods, NMR and FTIR. The antioxidant activity of propyl gallate was evaluated and compared to the synthetic classical antioxidants, BHA and ascorbic acid, taken as references. In addition, the antimicrobial activity of the propyl gallate was tested against S. xylosus, Escherchia coli and Staphylococcus aureus using disc diffusion and macrodilution methods. Our results show that the synthesized propyl gallate ester presents a higher antioxidant and antimicrobial power than the parent gallic acid as well as the synthetic classical antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号