首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The malaria parasite invades the midgut tissue of its mosquito host as a motile form called the ookinete. We have examined the pellicle of the ookinete of Plasmodium gallinaceum by freeze-fracture and quick-freeze, deep-etch electron microscopy. The general organization is analogous to that of invasive stages of other members of Apicomplexa. The pellicle is composed of three membranes: the plasma membrane, and the two linked intermediate and inner membranes, which in the ookinete form one flattened vacuole that is located beneath the plasma membrane. The edges of this vacuole form a longitudinal suture. Beneath the vacuole is found an array of microtubules that are connected to the inner membrane by intramembranous particles. During freeze-fracture, the membranes can split along their hydrophobic planes, thus yielding six fracture faces, each of which displays a characteristic pattern of intramembranous particles. Additionally, we find that the ookinete pellicle differs from all other apicomplexan motile stages by the presence of large pores. These pores are of unknown function, but clearly might constitute a novel pathway for the transport of molecules to and from the cortex, which is independent of the well-described route through the apical micronemal/rhoptry complex. The pores may be the route by which motor proteins or other non micronemal surface proteins are trafficked, such as P25/P28 and SOAP, some of which are implicated in transmission blocking immunity.  相似文献   

2.
The colonization of liquid surfaces as floating biofilms or pellicles is a bacterial adaptation to optimally occupy the airliquid (A-L) niche. In aerobic heterotrophs, pellicle formation is beneficial for the utilization of O2 and nonpolar organic compounds. Pseudomonas alkylphenolica KL28, an alkylphenol degrader, forms flat circular pellicles that are 0.3–0.5 mm in diameter. In this study, we first monitored the pellicle developmental patterns of multicellular organization from the initial settlement stage. The pellicles developed by clonal growth and mutants for flagella and pilus formation established normal pellicles. In contrast, the mutants of an epm gene cluster for biosynthesis of alginate-like polymer were incompetent in cell alignment for initial two-dimensional (2D) pellicle growth, suggesting the role of the Epm polymer as a structural scaffold for pellicle biofilms. Microscopic observation revealed that the initial 2D growth transited to multilayers by an accumulated self-produced extracellular polymeric substance that may exert a constraint force. Electron microscopy and confocal laser scanning microscopy revealed that the fully matured pellicle structures were densly packed with matrix-encased cells displaying distinct arrangements. The cells on the surface of the pellicle were relatively flat, and those inside were longitudinally cross-packed. The extracellular polysaccharide stained by Congo red was denser on the pellicle rim and a thin film was observed in the open spaces, indicative of its role in pellicle flotation. Our results demonstrate that P. alkylphenolica KL28 coordinately dictates the cell arrangements of pellicle biofilms by the controlled growth of constituent cells that accumulate extracellular polymeric substances.  相似文献   

3.
Apicomplexa possess a complex pellicle that is composed of a plasma membrane and a closely apposed inner membrane complex (IMC) that serves as a support for the actin‐myosin motor required for motility and host cell invasion. The IMC consists of longitudinal plates of flattened vesicles, fused together and lined on the cytoplasmic side by a subpellicular network of intermediate filament‐like proteins. The spatial organization of the IMC has been well described by electron microscopy, but its composition and molecular organization is largely unknown. Here, we identify a novel protein of the IMC cytoskeletal network in Toxoplasma gondii, called TgSIP, and conserved among apicomplexan parasites. To finely pinpoint the localization of TgSIP, we used structured illumination super‐resolution microscopy and revealed that it likely decorates the transverse sutures of the plates and the basal end of the IMC. This suggests that TgSIP might contribute to the organization or physical connection among the different components of the IMC. We generated a T.gondii SIP deletion mutant and showed that parasites lacking TgSIP are significantly shorter than wild‐type parasites and show defects in gliding motility, invasion and reduced infectivity in mice.  相似文献   

4.
Structure of membrane domains and matrix components of the bovine acrosome   总被引:1,自引:0,他引:1  
The acrosomal membrane system of bovine spermatozoa was examined by thin-section, freeze-fracture, surface-replica, and negative staining techniques in order to identify structural differentiations of specific acrosomal membrane domains. The outer acrosomal membrane of the apical and principal segments is characterized by a prominent electron-dense complex associated with its luminal face and a random intramembranous particle distribution. In the equatorial segment, the two-dimensional organization of bridging elements extending between the outer and inner acrosomal membrane was determined and correlated to freeze-fracture images. The inner acrosomal membrane lacked the electron-dense assembly noted on the outer acrosomal membrane and in freeze-fracture it appears crystalline. Further studies identified the distribution of the electron-dense subacrosomal material in the space between the inner acrosomal membrane and outer nuclear membrane. Finally, new observations on the structural organization of the acrosomal matrix are presented.  相似文献   

5.
Deep-etching technique was used to investigate the organization of the pellicle complex of Euglena gracilis. The interpretation of the images was further supported by SEM and TEM investigations. Our results mainly validate data obtained by previous freeze-fracture studies on the E and P faces of the outer cortical membrane. At the level of the ridges, the outer E fracture face is highly organized in a regular striated pattern, whereas the P inner face shows a particulate structure. However, our images reveal that this particulate organization of the P face is not limited to the ridges, but it is displayed also by the grooves. Moreover, this face shows two distinct layers, a particulate layer facing the cytoplasm and a striated layer facing the E face; these layers represent different true fracture levels of the same P face.  相似文献   

6.
The effects of lipid-phase separation on the filipin action on pellicle membranes of ergosterol-replaced Tetrahymena pyriformis cells were studied by freeze-fracture electron microscopy. The pellicle membranes with phase separations induced by chilling from 34 degrees C (growth temperature) to lower temperatures (30, 22 and 15 degrees C) were treated with filipin. This produced filipin-induced lesions ("pits") only in the particulated (liquid) regions along the margin between solid and liquid domains, while they were produced in the particle-free (solid) areas when membranes were chilled to 15 degrees C. The pellicle membranes with lesions induced by filipin at 34 degrees C were chilled to 22 degrees C. This chilling raised larger particle-free areas and more condensed particle-aggregations on the membranes than on the membranes without the filipin treatment. These results suggest that the membrane fluidity affects induction and development of the ergosterol-filipin complex in the membrane.  相似文献   

7.
The surface complex of Euglena has been examined intact and after isolation and purification by the use of mild sonication to disrupt cells. In intact cells the surface complex (pellicle complex) is oriented in a series of parallel ridges and grooves, and possesses among other components a characteristic group of four to seven microtubules. Isolated pellicles retain the ridge and groove pattern but no microtubules are present. Isolates yielded at least three major polypeptides on SDS acrylamide gels; one or more of the polypeptides are postulated to be identical with a submembrane layer present in both intact and isolated pellicles; one polypeptide appears to be in or on the surface membrane. Antibodies directed against the isolated pellicles were conjugated directly or indirectly to fluorescein, latex spheres, or ferritin. In appropriate experiments with these antibody conjugates, it has been found that antigenic sites are immobile and that new antigenic sites (daughter strips) are inserted between parental strips in replicating cells. These results together with direct observation of daughter strips by transmission electron microscopy suggest that surface growth in Euglena occurs by intussusception. Microtubules associated with the pellicle complex are postulated to play a role in the development of new daughter strips, and possibly also in cell movements.  相似文献   

8.
The pellicles of alveolates (ciliates, apicomplexans, and dinoflagellates) share a common organization, yet perform very divergent functions, including motility, host cell invasion, and armor. The alveolate pellicle consists of a system of flattened membrane sacs (alveoli, which are the defining feature of the group) below the plasma membrane that is supported by a membrane skeleton as well as a network of microtubules and other filamentous elements. We recently showed that a family of proteins, alveolins, are common and unique to this pellicular structure in alveolates. To identify additional proteins that contribute to this structure, a pellicle proteome study was conducted for the ciliate Tetrahymena thermophila. We found 1,173 proteins associated with this structure, 45% (529 proteins) of which represented novel proteins without matches to other functionally characterized proteins. Expression of four newly identified T. thermophila pellicular proteins as green fluorescent protein-fusion constructs confirmed pellicular location, and one new protein located in the oral apparatus. Bioinformatic analysis revealed that 21% of the putative pellicular proteins, predominantly the novel proteins, contained highly repetitive regions with strong amino acid biases for particular residues (K, E, Q, L, I, and V). When the T. thermophila novel proteins were compared with apicomplexan genomic data, 278 proteins with high sequence similarity were identified, suggesting that many of these putative pellicular components are shared between the alveolates. Of these shared proteins, 126 contained the distinctive repeat regions. Localization of two such proteins in Toxoplasma gondii confirmed their role in the pellicle and in doing so identified two new proteins of the apicomplexan invasive structure--the apical complex. Screening broadly for these repetitive domains in genomic data revealed large and actively evolving families of such proteins in alveolates, suggesting that these proteins might underpin the diversity and utility of their unique pellicular structure.  相似文献   

9.
Different physico-chemical properties (eg adsorption kinetics, thickness, viscoelasticity, and mechanical stability) of adsorbed salivary pellicles depend on different factors, including the properties (eg charge, roughness, wettability, and surface chemistry) of the substratum. Whether these differences in the physico-chemical properties are a result of differences in the composition or in the organization of the pellicles is not known. In this work, the influence of substratum wettability on the composition of the pellicle was studied. For this purpose, pellicles eluted from substrata of different but well-characterized wettabilities were examined by means of sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The results showed that substratum hydrophobicity did not have a major impact on pellicle composition. In all substrata, the major pellicle components were found to be cystatins, amylases and large glycoproteins, presumably mucins. In turn, interpretation of previously reported data based on the present results suggests that variations in substratum wettability mostly affect the organization of the pellicle components.  相似文献   

10.
Scher K  Kesselman E  Shimoni E  Yaron S 《Biofouling》2007,23(5-6):385-394
A wide variety of microorganisms are able to form biofilms at the interface between air and liquid (pellicles). In this study changes during the maturation of the pellicle of Salmonella Typhimurium were analysed and the role of cellulose in the pellicle structure and morphology evaluated. The morphology of both sides of the pellicle was characterised using atomic force microscopy and scanning electron microscopy. Overall, there was a marked difference in the morphology of the water-facing (WF) and air-facing (AF) biofilm surfaces. While the AF side appeared to be uniform, and extensively covered with an exocellular coating, cells in the WF side were distributed into clusters and were less covered. However, the similarity in size and shape of single cells from both sides of the pellicle may indicate that the bacterial cells across the pellicle have a similar physiological status. During maturation, porous structures with multiple cracks and channels were created in the pellicle, leading to disintegration. By comparison with the structure of pellicles of a cellulose-deficient mutant, it was demonstrated that the observed disintegration of mature pellicles probably occurred in part by self-hydrolysis of components of the matrix.  相似文献   

11.
The effects of lipid-phase separation on the filipin action on pellicle membranes of ergosterol-replaced Tetrahymena pyriformis cells were studied by freeze-fracture electron microscopy. The pellicle membranes with phase separations induced by chilling from 34°C (growth temperature) to lower temperatures (30, 22 and 15°C) were treated with filipin. This produced filipin-induced lesions (“pits”) only in the particulated (liquid) regions along the margin between solid and liquid domains, while they were produced in the particle-free (solid) areas when membranes were chilled to 15°C. The pellicle membranes with lesions induced by filipin at 34°C were chilled to 22°C. This chilling raised larger particle-free areas and more condensed particle-aggregations on the membranes than on the membranes without the filipin treatment. These results suggest that the membrane fluidity affects induction and development of the ergosterol-filipin complex in the membrane.  相似文献   

12.
Abstract

A wide variety of microorganisms are able to form biofilms at the interface between air and liquid (pellicles). In this study changes during the maturation of the pellicle of Salmonella Typhimurium were analysed and the role of cellulose in the pellicle structure and morphology evaluated. The morphology of both sides of the pellicle was characterised using atomic force microscopy and scanning electron microscopy. Overall, there was a marked difference in the morphology of the water-facing (WF) and air-facing (AF) biofilm surfaces. While the AF side appeared to be uniform, and extensively covered with an exocellular coating, cells in the WF side were distributed into clusters and were less covered. However, the similarity in size and shape of single cells from both sides of the pellicle may indicate that the bacterial cells across the pellicle have a similar physiological status. During maturation, porous structures with multiple cracks and channels were created in the pellicle, leading to disintegration. By comparison with the structure of pellicles of a cellulose-deficient mutant, it was demonstrated that the observed disintegration of mature pellicles probably occurred in part by self-hydrolysis of components of the matrix.  相似文献   

13.
In Paramecium, no Ca2(+)-ATPases with the properties of Ca2+ pumps have been identified. Here we report a pellicle associated Ca2(+)-ATPase activity and a corresponding phosphoprotein intermediate characteristic of a pump. The Ca2(+)-ATPase activity requires 3 mM Mg for optimal Ca2+ stimulation (KCa = 90 nM) and is specific for ATP as substrate (Km = 75 microM). Vanadate and calmidazolium inhibit Ca2(+)-stimulated activity with an EC50 of about 2 microM and 0.5 microM, respectively. Likewise, 10 microM trifluoperazine inhibits 80% of Ca2(+)-ATPase activity, but bovine calmodulin fails to stimulate. The Ca2(+)-ATPase is not inhibited by sodium azide (10 mM), oligomycin (10 micrograms/ml) or ouabain (0.2 mM). Incubation of pellicles with [gamma-32P]ATP specifically labels a 133 kDa protein in a Ca2(+)-dependent, hydroxylamine-sensitive manner, and the level of phosphorylation is increased by 100 microM La3+. Phosphorylation of an endoplasmic reticulum-enriched fraction labels a Ca2(+)-dependent protein different from the pellicle protein, being lower in molecular mass and unaffected by La3+. Ca2+ uptake by the alveolar sacs, integral components of the pellicle membrane complex, is poorly coupled to Ca2(+)-stimulated ATP hydrolysis (Ca2+ transported/ATP hydrolysed less than 0.2) and is much less sensitive to vanadate inhibition (EC50 approx. 20 microM) compared to the total Ca2(+)-ATPase activity. Therefore, the majority of the Ca2(+)-ATPase activity is likely to be plasma membrane associated.  相似文献   

14.
Yoon SH  Jin HJ  Kook MC  Pyun YR 《Biomacromolecules》2006,7(4):1280-1284
Electrically conducting polymeric membranes were prepared by incorporating multiwalled carbon nanotubes (MWCNTs) into bacterial cellulose pellicles produced by Gluconacetobacter xylinum. The MWCNTs were dispersed in a surfactant (cationic cetyl trimethylammonium bromide) solution, and cellulose pellicles were dipped into the solution for 6, 12, and 24 h. The surfactants were then extracted in pure water and dried. Electron microscopy showed that the individual MWCNTs were strongly adhered to the surface and the inside of the cellulose pellicle. The conductivity of the MWCNTs-incorporated cellulose pellicle, as measured by a four-probe at room temperature, was 1.4 x 10(-1) S/cm, based on the total cross-sectional area (approximately 9.6 wt % of MWCNTs). This suggests that the MWCNTs were incorporated uniformly and densely into the pellicles.  相似文献   

15.
A subfraction of mitochondrial membranes was prepared from osmotically lysed rat liver mitochondria by density gradient centrifugation which contained the inner boundary membrane and the contact sites between this membrane and the outer membrane. The fraction was composed of inner and outer limiting membrane components as shown by the presence of specific marker enzymes, monoamine oxidase and glycerolphosphate oxidase. Surface proteolysis analysis, studies of cytochrome c permeability, and electron microscopy revealed the localization of the inner membrane component within a right-side-out outer membrane vesicle. Moreover, the outer membrane component in this fraction exhibited a higher capacity to bind hexokinase and had a higher specific activity of glutathione transferase than the pure outer membrane. In freeze-fracture analyses the fraction showed fracture plane deflections which may be specific for hydrophobic interactions between the two membranes.  相似文献   

16.
Alveolins are a recently described class of proteins common to all members of the superphylum Alveolata that are characterized by conserved charged repeat motifs (CRMs) but whose exact function remains unknown. We have analyzed the smaller of the two alveolins of Tetrahymena thermophila, TtALV2. The protein localizes to dispersed, broken patches arranged between the rows of the longitudinal microtubules. Macronuclear knockdown of Ttalv2 leads to multinuclear cells with no apparent cell polarity and randomly occurring cell protrusions, either by interrupting pellicle integrity or by disturbing cytokinesis. Correct association of TtALV2 with the alveoli or the pellicle is complex and depends on both the termini as well as the charged repeat motifs of the protein. Proteins containing similar CRMs are a dominant part of the ciliate membrane cytoskeleton, suggesting that these motifs may play a more general role in mediating membrane attachment and/or cytoskeletal association. To better understand their integration into the cytoskeleton, we localized a range of CRM-based fusion proteins, which suggested there is an inherent tendency for proteins with CRMs to be located in the peripheral cytoskeleton, some nucleating as filaments at the basal bodies. Even a synthetic protein, mimicking the charge and repeat pattern of these proteins, directed a reporter protein to a variety of peripheral cytoskeletal structures in Tetrahymena. These motifs might provide a blueprint for membrane and cytoskeleton affiliation in the complex pellicles of Alveolata.  相似文献   

17.
The pellicle of the protozoan parasite Toxoplasma gondii is a unique triple bilayer structure, consisting of the plasma membrane and two tightly apposed membranes of the underlying inner membrane complex. Integral membrane proteins of the pellicle are likely to play critical roles in host cell recognition, attachment, and invasion, but few such proteins have been identified. This is in large part because the parasite surface is dominated by a family of abundant and highly immunogenic glycosylphosphatidylinositol (GPI)-anchored proteins, which has made the identification of non-GPI-linked proteins difficult. To identify such proteins, we have developed a radiolabeling approach using the hydrophobic, photoactivatable compound 5-[(125)I]iodonaphthalene-1-azide (INA). INA can be activated by photosensitizing fluorochromes; by restricting these fluorochromes to the pellicle, [(125)I]INA labeling will selectively target non-GPI-anchored membrane-embedded proteins of the pellicle. We demonstrate here that three known membrane proteins of the pellicle can indeed be labeled by photosensitization with INA. In addition, this approach has identified a novel 22-kDa protein, named PhIL1 (photosensitized INA-labeled protein 1), with unexpected properties. While the INA labeling of PhIL1 is consistent with an integral membrane protein, the protein has neither a transmembrane domain nor predicted sites of lipid modification. PhIL1 is conserved in apicomplexan parasites and localizes to the parasite periphery, concentrated at the apical end just basal to the conoid. Detergent extraction and immunolocalization data suggest that PhIL1 associates with the parasite cytoskeleton.  相似文献   

18.
Pomel S  Luk FC  Beckers CJ 《PLoS pathogens》2008,4(10):e1000188
Apicomplexan parasites are dependent on an F-actin and myosin-based motility system for their invasion into and escape from animal host cells, as well as for their general motility. In Toxoplasma gondii and Plasmodium species, the actin filaments and myosin motor required for this process are located in a narrow space between the parasite plasma membrane and the underlying inner membrane complex, a set of flattened cisternae that covers most the cytoplasmic face of the plasma membrane. Here we show that the energy required for Toxoplasma motility is derived mostly, if not entirely, from glycolysis and lactic acid production. We also demonstrate that the glycolytic enzymes of Toxoplasma tachyzoites undergo a striking relocation from the parasites' cytoplasm to their pellicles upon Toxoplasma egress from host cells. Specifically, it appears that the glycolytic enzymes are translocated to the cytoplasmic face of the inner membrane complex as well as to the space between the plasma membrane and inner membrane complex. The glycolytic enzymes remain pellicle-associated during extended incubations of parasites in the extracellular milieu and do not revert to a cytoplasmic location until well after parasites have completed invasion of new host cells. Translocation of glycolytic enzymes to and from the Toxoplasma pellicle appears to occur in response to changes in extracellular [K(+)] experienced during egress and invasion, a signal that requires changes of [Ca(2+)](c) in the parasite during egress. Enzyme translocation is, however, not dependent on either F-actin or intact microtubules. Our observations indicate that Toxoplasma gondii is capable of relocating its main source of energy between its cytoplasm and pellicle in response to exit from or entry into host cells. We propose that this ability allows Toxoplasma to optimize ATP delivery to those cellular processes that are most critical for survival outside host cells and those required for growth and replication of intracellular parasites.  相似文献   

19.
Transmission electron microscopy of the gamont stage of Pterospora floridiensis has revealed a number of features. The gamont's surface varies from smooth to crenulate, with numerous pockets and folds. The pellicle is composed of an outer membrane, a middle lucent region, and an inner dense layer comprised of two tightly appressed membranes. Short ridges on the pellicle are 200-300+ nm long, 75-100 nm wide, and have a height of approximately 50 nm. The thickness of the pellicle is 100 nm when measured from the inner membrane to the top of a ridge. The ridges are formed by the plasma membrane and an underlying structure that is circular in cross-section. The surface folds and the pellicular ridges are distributed over the soma and the cell's unusual branching arms, though both are reduced near the junction between two gamonts in syzygy, and are absent at the central area of the junctional site. The cell has numerous active Golgi complexes associated with vesicles, as well as scattered dense mitochondria, lipid droplets, and paraglycogen granules. The nucleus has a large (13 microm) endosome, eccentrically located, and peripheral chromatin along the inner nuclear membrane.  相似文献   

20.
The organization and development of cell coverings in two alternate phases of the life cycle in a marine dinoflagellate, Scrippsiella hexapraecingula Horiguchi et Chihara, were investigated by thin sectioning and freeze‐fracture electron microscopy. In one of these phases, the motile phase, cells have an outermost plasma membrane that is lined with flattened amphiesmal vesicles. Groups of microtubules lie beneath these vesicles. In mature motile cells, thecal plates are completely enclosed in individual amphiesmal vesicles. After settling, the cells enter the second, non‐motile phase. Here, ecdysis occurs, resulting in several steps including formation of the first pellicle layer (PI), fusion of the inner amphiesmal vesicle membranes to form the new plasma membrane, deposition of the second pellicle layer (PM) under PI, and the appearance and fusion of juvenile amphiesmal vesicles to form new territories, which eventually give rise to new thecal plates in the next motile phase. Thus, the pattern in which thecal plates are arranged in motile cells is determined at the time when the amphiesmal vesicles develop into non‐motile cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号