首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Movement and phagocytosis are clue events in colonisation and invasion of tissues by Entamoeba histolytica, the protozoan causative of human amoebiasis. During phagocytosis, EhRab proteins interact with other functional molecules, conducting them to the precise cellular site. The gene encoding EhrabB is located in the complementary chain of the DNA fragment containing Ehcp112 and Ehadh genes, which encode for the proteins of the EhCPADH complex, involved in phagocytosis. This particular genetic organisation suggests that the three corresponding proteins may be functionally related. Here, we studied the relationship of EhRabB with EhCPADH and actin during phagocytosis. First, we obtained the EhRabB 3D structure to carry out docking analysis to predict the interaction sites involved in the EhRabB protein and the EhCPADH complex contact. By confocal microscopy, transmission electron microscopy, and immunoprecipitation assays, we revealed the interaction among these proteins when they move through different vesicles formed during phagocytosis. The role of the actin cytoskeleton in this event was also confirmed using Latrunculin A to interfere with actin polymerisation. This affected the movement of EhRabB and EhCPADH, as well as the rate of phagocytosis. Mutant trophozoites, silenced in EhrabB gene, evidenced the interaction of this molecule with EhCPADH and strengthened the role of actin during erythrophagocytosis.  相似文献   

2.
We analyzed the expression and location of EhRabB in clone L-6, a phagocytosis-deficient mutant of Entamoeba histolytica, in comparison with the wild-type clone A. Intriguingly, trophozoites of clone L-6 express more EhRabB than those of clone A. However, the majority of EhRabB-containing vesicles remained in the cytoplasm of clone L-6 during phagocytosis. To investigate molecular alterations in EhRabB of clone L-6 we compared the EhrabB gene sequences from clones L-6 and A. We also isolated, sequenced and compared the RabB protein of Entamoeba dispar. Results showed that EhrabB gene of clone L-6 is 98.2 and 94.1% identical to rabB genes of E. dispar and clone A, respectively. The rabB genes from clone A and E. dispar have 92.2% identity. Four out of five amino acids changes in RabB proteins of clone L-6 and E. dispar are shared. These changes may alter the binding of effector proteins and the specific subcellular location of EhRabB.  相似文献   

3.
Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.  相似文献   

4.
Functional genomics and forward genetics seek to assign function to all known genes in a genome. Entamoeba histolytica is a protozoan parasite for which forward genetics approaches have not been extensively applied. It is the causative agent of amoebic dysentery and liver abscess, and infection is prevalent in developing countries that cannot prevent its fecal-oral spread. It is responsible for considerable global morbidity and mortality. Given that the E. histolytica genome has been sequenced, it should be possible to apply genomic approaches to discover gene function. We used a genome-wide over-expression screen to uncover genes regulating an important virulence function of E. histolytica, namely phagocytosis. We developed an episomal E. histolytica cDNA over-expression library, transfected the collection of plasmids into trophozoites, and applied a high-throughput screen to identify phagocytosis mutants in the population of over-expressing cells. The screen was based on the phagocytic uptake of human red blood cells loaded with the metabolic toxin, tubercidin. Expression plasmids were isolated from trophozoites that survived exposure to tubercidin-charged erythrocytes (phagocytosis mutants), and the cDNAs were sequenced. We isolated the gene encoding profilin, a well-characterized cytoskeleton-regulating protein with a known role in phagocytosis. This supports the validity of our approach. Furthermore, we assigned a phagocytic role to several genes not previously known to function in this manner. To our knowledge, this is the first genome-wide forward genetics screen to be applied to this pathogen. The study demonstrates the power of forward genetics in revealing genes regulating virulence in E. histolytica. In addition, the study validates an E. histolytica cDNA over-expression library as a valuable tool for functional genomics.  相似文献   

5.
Phagocytosis plays a major role during the invasive process of the human intestine by the pathogenic amoeba E. histolytica. This parasite is the etiologic agent causing amoebic dysentery, a worldwide disease causing 50 million of clinical cases leading to about 100,000 deaths annually. The invasive process is characterized by a local acute inflammation and the destruction of the intestinal tissue at the invasion site. The recent sequencing of the E. histolytica genome has opened the way to large-scale approaches to study parasite virulence such as processes involved in human cell phagocytosis. In particular, two different studies have recently described the phagosome proteome, providing new insights into the process of phagocytosis by this pathogenic protozoan. It has been previously described that E. histolytica induces apoptosis and phagocytosis of the human target cells. Induction of apoptosis by the trophozoites is thought to be involved in the close regulation of the inflammatory response occurring during infection. Little is known about the molecular mechanisms responsible for induction of apoptosis or in the recognition of apoptotic cells by E. histolytica. In this review, we comment on the recent data we obtained after isolation of the early phagosomes and the identification of its associated proteins. We focus on the surface molecules potentially involved in human cell recognition. In particular, we propose several parasite molecules, potentially involved in the induction of apoptosis and/or the phagocytosis of human apoptotic cells.  相似文献   

6.
Phagocytosis of human cells is a crucial activity for the virulence of the human parasite Entamoeba histolytica. This protozoan invades and destroys the intestine by killing and phagocytosing epithelial cells, erythrocytes and cells from the immune system. In this study, we used magnetic beads covered with proteins from human serum as a model system to study the early events involved in phagocytosis by E. histolytica. We validated the system showing that the beads uptake triggered the activation of the actin-myosin cytoskeleton and involved a PI3-kinase as previously described for erythrophagocytosis. We purified early phagosomes from wild-type (WT) amoeba and from parasites that overproduced myosin IB (MyoIB+), the unique unconventional myosin of E. histolytica. The MyoIB+ cells exhibit a slower and more synchronized uptake process than the WT strain. Proteomic analysis by liquid chromatography and tandem mass spectroscopy (LC-MS/MS) of the WT and MyoIB+ phagosomes allowed us to identify, for the first time, molecular actors involved in the early step of the uptake process. These include proteins involved in cytoskeleton activity, signalling, endocytosis, lytic activity and cell surface proteins. Interestingly, the proteins that we found specifically recruited on the phagosomes from the MyoIB+ strain were previously described in other eukarytotic cells, as involved in the regulation of cortical F-actin dynamics, such as alpha-actinin and formins. This proteomics approach allows a step further towards the understanding of the molecular mechanisms involved in phagocytosis in E. histolytica that revealed some interesting differences compared with phagocytosis in macrophages or Dictyostelium discoideum, and allowed to identify putative candidates for proteins linked to myosin IB activity during the phagocytic process.  相似文献   

7.
The Entamoeba histolytica EhCPADH complex, formed by a cysteine proteinase (EhCP112) and an adhesin (EhADH112), is involved in adherence, phagocytosis and cytolysis. This makes this complex an attractive candidate as a vaccine against amoebiasis. Here, we produced the recombinant polypeptide EhADH243, which includes the adherence epitope detected by a monoclonal antibody against the EhCPADH complex. EhADH243 was purified, and the effect of the polypeptide on in vitro and in vivo virulence was studied. Antibodies against EhADH243 reacted with the EhCPADH complex and with the recombinant polypeptide. EhADH243 and antibodies against this polypeptide inhibited adherence, phagocytosis and destruction of cell monolayers by live trophozoites, but had little effect on cell monolayer destruction by trophozoite extracts. EhADH243 recognized a 97 kDa protein in the MDCK membrane fraction that could be a putative receptor for E. histolytica trophozoites. Hamsters immunized with EhADH243 developed humoral response against EhCPADH, and animals were partially protected from amoebic liver abscess.  相似文献   

8.
Endocytosis is an important virulence function for Entamoeba histolytica, the causative agent of amoebic dysentery. Although a number of E. histolytica proteins that regulate this process have been identified, less is known about the role of lipids. In other systems, phosphatidylinositol 3-phosphate (PI3P), a product of phosphatidylinositol 3-kinase (PI 3-kinase), has been shown to be required for endocytosis. FYVE-finger domains are protein motifs that bind specifically to PI3P. Using a PI3P biosensor consisting of glutathione-S-transferase (GST) fused to two tandem FYVE-finger domains, we have localized PI3P to phagosomes but not fluid-phase pinosomes in E. histolytica, suggesting a role for PI3P in phagocytosis. Treatment of cells with PI 3-kinase inhibitors impaired GST-2 x FYVE-phagosome association supporting the authenticity of the biosensor staining. However, treatment with PI 3-kinase inhibitors did not inhibit E. histolytica-particle interaction, indicating that PI3P is not required for the initial step, but is required for subsequent steps of phagocytosis.  相似文献   

9.
The sequencing of the genome of Entamoeba histolytica has allowed a reconstruction of its metabolic pathways, many of which are unusual for a eukaryote. Based on the genome sequence, it appears that amino acids may play a larger role than previously thought in energy metabolism, with roles in both ATP synthesis and NAD regeneration. Arginine decarboxylase may be involved in survival of E. histolytica during its passage through the stomach. The usual pyrimidine synthesis pathway is absent, but a partial pyrimidine degradation pathway could be part of a novel pyrimidine synthesis pathway. Ribonucleotide reductase was not found in the E. histolytica genome, but it was found in the close relatives Entamoeba invadens and Entamoeba moshkovskii, suggesting a recent loss from E. histolytica. The usual eukaryotic glucose transporters are not present, but members of a prokaryotic monosaccharide transporter family are present.  相似文献   

10.
To understand the roles of phosphoinositides [PtdIns] in phagocytosis of parasitic eukaryotes, we examined the interaction of phosphatidylinositol-3-phosphate [PtdIns(3)P] and putative PtdIns-P-binding proteins during phagocytosis in the enteric protozoan parasite Entamoeba histolytica. It was previously shown that phagocytosis in E. histolytica is indispensable for virulence and is inhibited by PtdIns 3-kinase inhibitors. We demonstrated by time-lapse live imaging that during the initiation of phagocytosis, the PtdIns(3)P biomarker GFP–Hrs–FYVE, was translocated to the phagocytic cup, phagosome, and to tunnel-like structures connecting the plasma membrane and phagosomes. E. histolytica possesses 12 FYVE domain-containing proteins (EhFP1-12), 11 of which also contain the RhoGEF/DH domain. Among them EhFP4 was shown to be recruited to the tunnel-like structures and to the proximal region of the phagosome. We further demonstrated that EhFP4 physically interacted with 4 of 10 predominant Rho/Rac small GTPases. Phosphoinositide binding assay showed that EhFP4 unexpectedly bound to PtdIns(4)P via the carboxyl-terminal domain and that the FYVE domain modulates the binding specificity of EhFP4 to PtdIns-P. Expression of the FYVE domain from EhFP4 inhibited phagocytosis while enhancement was observed when mammalian Hrs–FYVE domain was expressed. Altogether, we demonstrated that PtdIns(3)P, PtdIns(4)P and EhFP4 coordinately regulate phagocytosis and phagosome maturation in this parasitic eukaryote.  相似文献   

11.
Cysteine proteinases are key virulence factors of Entamoeba histolytica that are released during the process of invasion. We used a chemical mutant of E. histolytica strain HM-1:IMSS, clone L6, which is deficient in virulence, phagocytosis, and cysteine proteinase activity to help define the mechanisms of cysteine proteinase release. All cysteine proteinase genes of wild type HM-1 were present in the L6 mutant genome, but three of the major expressed proteinases, ehcp1, ehcp2, and ehcp5 were both transcribed, translated, and released at lower levels in L6. We hypothesized that a central protein such as the calcium binding protein 1, EhCaBP1, which is required for both phagocytosis and exocytosis might be deficient in this mutant. We found that both mRNA and proteinase levels of EhCaBP1 were decreased in L6. These findings provide an important link between phagocytosis, passive release of multiple cysteine proteinases, and attenuated virulence of this E. histolytica mutant.  相似文献   

12.
Entamoeba histolytica and Entamoeba dispar are two morphologically indistinguishable species that are found in the human gut. Of the two, E. histolytica is considered to be pathogenic while E. dispar is nonpathogenic. To generate molecular probes to detect and distinguish between the two species, we utilized repeat sequences present in Entamoeba genome. We have developed probes and primers from rDNA episomes, and unidentified Entamoeba EST1 repeat for this purpose, and used them for dot blot hybridization and PCR amplification. To investigate the possible existence of invasive and noninvasive strains of E. histolytica, the ability to differentiate individual isolates is necessary. For this purpose, we have utilized a modification of the AFLP procedure called 'Transposon display,' which generates and displays large number of genomic bands associated with a transposon. We have used the abundant retrotransposon, EhSINE1, for this purpose,and demonstrated its potential as a marker to study strain variation in E. histolytica. This technique could suitably be employed in carrying out significant molecular epidemiological studies and large-scale typing of this parasite.  相似文献   

13.
Entamoeba histolytica is an enteric tissue-invading protozoan parasite that can cause amebic colitis and liver abscess in humans. E. histolytica has the capability to kill colon epithelial cells in vitro; however, information regarding the role of calpain in colon cell death induced by ameba is limited. In this study, we investigated whether calpains are involved in the E. histolytica-induced cell death of HT-29 colonic epithelial cells. When HT-29 cells were co-incubated with E. histolytica, the propidium iodide stained dead cells markedly increased compared to that in HT-29 cells incubated with medium alone. This pro-death effect induced by ameba was effectively blocked by pretreatment of HT-29 cells with the calpain inhibitor, calpeptin. Moreover, knockdown of m- and μ-calpain by siRNA significantly reduced E. histolytica-induced HT-29 cell death. These results suggest that m- and μ-calpain may be involved in colon epithelial cell death induced by E. histolytica.  相似文献   

14.
The protozoan parasite Entamoeba histolytica can invade both intestinal and extra intestinal tissues resulting in amoebiasis. During the process of invasion E. histolytica ingests red blood and host cells using phagocytic processes. Though phagocytosis is considered to be a key virulence determinant, the mechanism is not very well understood in E. histolytica. We have recently demonstrated that a novel C2 domain-containing protein kinase, EhC2PK is involved in the initiation of erythrophagocytosis. Because cells overexpressing the kinase-dead mutant of EhC2PK displayed a reduction in erythrophagocytosis, it appears that kinase activity is necessary for initiation. Biochemical analysis showed that EhC2PK is an unusual Mn(2+)-dependent serine kinase. It has a trans-autophosphorylated site at Ser(428) as revealed by mass spectrometric and biochemical analysis. The autophosphorylation defective mutants (S428A, KDΔC) showed a reduction in auto and substrate phosphorylation. Time kinetics of in vitro kinase activity suggested two phases, an initial short slow phase followed by a rapid phase for wild type protein, whereas mutations in the autophosphorylation sites that cause defect (S428A) or conferred phosphomimetic property (S428E) displayed no distinct phases, suggesting that autophosphorylation may be controlling kinase activity through an autocatalytic mechanism. A reduction and delay in erythrophagocytosis was observed in E. histolytica cells overexpressing S428A and KDΔC proteins. These results indicate that enrichment of EhC2PK at the site of phagocytosis enhances the rate of trans-autophosphorylation, thereby increasing kinase activity and regulating the initiation of erythrophagocytosis in E. histolytica.  相似文献   

15.
16.
Using a functional complementation strategy, we have isolated a Schistosoma mansoni cDNA that complemented Escherichia coli mutant strains which are defective in the DNA base excision repair pathway. This cDNA partially complemented the MMS-sensitive phenotype of these strains. The sequence of the isolated cDNA was homologous to genes involved in the RNA metabolism pathway, especially ScIMP4 of Saccharomyces cerevisiae. To establish whether the S. mansoni cDNA clone could complement yeast ScIMP4-defective mutants, we constructed a yeast haploid strain that coded for a truncated Imp4p protein. This mutant strain was treated with different DNA damaging agents, but showed only MMS sensitivity. The functional homology between the ScIMP4 gene and the cDNA from S. mansoni was verified by partial complementation of the mutant yeast with the worm's gene. This gene appears to be involved in DNA repair and RNA metabolism in both S. mansoni and S. cerevisiae.  相似文献   

17.
The molecular, biochemical, and cellular characterization of EhGEF1 protein is described. Complete cDNA sequence of 1890 bp revealed an open reading frame that encodes a protein of 69 kDa. EhGEF1 is constituted of Dbl homology domain, pleckstrin homology domain, and several putative regulation sites. Studies of guanine nucleotide exchange activity of EhGEF1 on several GTPases from Entamoeba histolytica and Homo sapiens showed preferential activation on EhRacG, suggesting that EhGEF1 protein could be involved in mechanisms related to actin cytoskeleton activation, cytokinesis, capping, and uroid formation in trophozoite. Confocal microscopy studies of pExEhNeo/HSV-tagged-EhGEF1-transfected cells showed that trophozoites stimulated with ConA, EhGEF1, and EhRacG were localized at plasma membrane. Cellular studies showed that F-actin content of pExEhNeo/HSV-tagged-EhGEF1-transfected trophozoites as well as cellular migration and cell damage capacity were significantly altered. The observations suggest that EhRacG was the principal target of EhGEF1 and that EhGEF1 may provide a link between F-actin dynamics and EhRacG signaling.  相似文献   

18.
Entamoeba histolytica , a human parasite, crosses the natural barriers of the intestine and, in turn, spreads into the deeper organs, resulting in amoebiasis. The motility of the parasite and its ability to lyse or phagocytose human cells facilitates passage of the amoeba through the intestinal epithelium. Little is known about the uptake of material by this parasite; nevertheless, the cytoskeleton is believed to play a role in phagocytosis. Myosin IB, an actin-binding protein, localizes to the phagocytic cup and, with time, surrounds the internalized phagosome itself. The role of unconventional myosins in phagocytosis has also been demonstrated in other cell types, suggesting that this molecular mechanism is a common denominator in phagocytic events. Here, we summarize the emerging view of the role of unconventional myosins as well as other cytoskeleton-associated proteins in pseudopod formation at early stages of phagocytosis and during the late step of this process in E. histolytica .  相似文献   

19.
Sialoadhesin (Sn) is a macrophage-restricted endocytic receptor involved in cell–cell, cell–matrix and cell–pathogen interactions. Recently, porcine Sn (pSn) was shown to be involved in signaling and lately Sn is gaining interest as a potential target for immunotherapy. However, little is known about the effect of ligand binding to Sn on macrophage effector functions. In this study, we tested the effect of antibody binding to pSn on macrophage viability, phagocytosis of microspheres, uptake and processing of soluble antigens, reactive oxygen/nitrogen species production, MHC I and MHC II cell surface expression and cytokine production. This was done by treatment of porcine primary alveolar macrophages with the pSn-specific mAb 41D3, or an isotype-matched control mAb. No significant effect on most effector functions under study was observed, except for a significant reduction of phagocytosis. Thus, antibody binding to pSn can downregulate phagocytosis, which could have implications on homeostasis, infectious and immune diseases, and immunotherapy.  相似文献   

20.
Contact-dependent killing and phagocytosis of target cells by Entamoeba histolytica trophozoites is mediated by the galactose (Gal) and N-acetyl-d-galactosamine (GalNAc)-inhibitable lectin. Previous work has suggested that this lectin functions as part of a signal transduction complex. To identify proteins that might be part of this complex, amebic trophozoites were bound to GalNAc-BSA-labeled magnetic beads and lysed. Bound proteins were eluted from the beads and analyzed by tandem mass spectrometry. Along with the Gal/GalNAc lectin subunits, several cytoskeletal proteins, potential signaling proteins, and a novel transmembrane protein, consistently purified with the GalNAc-BSA beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号