首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
GPR35, previously an orphan G-protein coupled receptor, is a receptor for kynurenic acid. Here we examine the distribution of GPR35 in the rat dorsal root ganglion (DRG) and the effects of its selective activation. GPR35 was expressed predominantly by small- to medium-diameter neurons of the DRG. Many of these same neurons also expressed the transient receptor potential vanilloid 1 channel, a nociceptive neuronal marker. The GPR35 agonists kynurenic acid and zaprinast inhibited forskolin-stimulated cAMP production by cultured rat DRG neurons. Inhibition required Gi/o proteins as the effect was completely abolished by pretreatment with pertussis toxin. This is the first study to report the expression and function of GPR35 in rat nociceptive DRG neurons. We propose that GPR35 modulates nociception and that continued study of this receptor will provide additional insight into the role of kynurenic acid in pain perception.  相似文献   

2.
The aim of this study was to examine the expression of G protein-coupled receptor (GPR)35 in human invariant natural killer T (iNKT) cells and to determine the functional effects induced by selective activation of this receptor. RT-PCR analysis showed that both human iNKT cells and resting PBMC expressed GPR35; GPR35 protein resulted mostly localized in the plasma membrane, while it internalized in punctate intracellular structures following specific receptor activation (Western blot and immunofluorescence/confocal microscopy analysis). The specific activation of GPR35 by selective receptor agonists [l-kynurenic acid (KYNA)] or 1,4-dihydro-5-(2-propoxyphenyl)-7H-1,2,3-triazolo [4,5-d]pyrimidine-7-one (zaprinast)] functionally correlated with a significant reduction in IL-4 release from α-galactosylceramide (α-GalCer)-activated human iNKT cells, and this effect resulted mediated by pertussis toxin (PTX)-sensitive Gi/o proteins.In conclusion, our results demonstrate that human iNKT cells express GPR35 functionally active in reducing IL-4 release.  相似文献   

3.
G protein-coupled receptors (GPCRs) have the potential to play a role as molecular sensors responsive to luminal dietary contents. Although such a role for GPCRs has been implicated in the intestinal response to protein hydrolysate, no GPCR directly involved in this process has been previously identified. In the present study, for the first time, we identified GPR93 expression in enterocytes and demonstrated its activation in these cells by protein hydrolysate with EC50 of 10.6 mg/ml as determined by the induction of intracellular free Ca2+. In enterocytes, GPR93 was synergistically activated by protein hydrolysate in combination with an agonist, oleoyl-l-alpha-lysophosphatidic acid (LPA), which activated the receptor in these enterocytes with EC50 of 7.9 nM. The increased intracellular Ca2+ by GPR93 activation was observed without the addition of a promiscuous Galpha protein and was pertussis toxin sensitive, which suggests Galpha(q)- and Galpha(i)-mediated pathways. Activated GPR93 also induced pertussis toxin-sensitive ERK1/2 phosphorylation. Both nuclear factor of activated T cells and 12-O-tetradecanoylphorbol 13-acetate responsive elements reporter activities were induced by protein hydrolysate in cells exogenously expressing GPR93. The peptidomimetic cefaclor by itself did not activate GPR93 but potentiated the protein hydrolysate response and further amplified the synergistic enhancement of GPR93 activation by protein hydrolysate and LPA. These data suggest that, physiologically, the composition of stimuli might determine GPR93 activity or its sensitivity toward a given activator and suggest a new mechanism of the regulation of mucosal cell proliferation and differentiation and hormonal secretion by dietary products in the lumen.  相似文献   

4.
G protein-coupled receptor 35 (GPR35) is poorly characterized but nevertheless has been revealed to have diverse roles in areas including lower gut inflammation and pain. The development of novel reagents and tools will greatly enhance analysis of GPR35 functions in health and disease. Here, we used mass spectrometry, mutagenesis, and [32P] orthophosphate labeling to identify that all five hydroxy-amino acids in the C-terminal tail of human GPR35a became phosphorylated in response to agonist occupancy of the receptor and that, apart from Ser294, each of these contributed to interactions with arretin-3, which inhibits further G protein-coupled receptor signaling. We found that Ser303 was key to such interactions; the serine corresponding to human GPR35a residue 303 also played a dominant role in arrestin-3 interactions for both mouse and rat GPR35. We also demonstrated that fully phospho-site–deficient mutants of human GPR35a and mouse GPR35 failed to interact effectively with arrestin-3, and the human phospho-deficient variant was not internalized from the surface of cells in response to agonist treatment. Even in cells stably expressing species orthologues of GPR35, a substantial proportion of the expressed protein(s) was determined to be immature. Finally, phospho-site–specific antisera targeting the region encompassing Ser303 in human (Ser301 in mouse) GPR35a identified only the mature forms of GPR35 and provided effective sensors of the activation status of the receptors both in immunoblotting and immunocytochemical studies. Such antisera may be useful tools to evaluate target engagement in drug discovery and target validation programs.  相似文献   

5.
We used multiple imaging assays to test the hypothesis that GPR6, a constitutively active Gs-coupled receptor, is present on the cell surface. A pHluorin tag at the N-terminus of rat GPR6 expressed in human embryonic kidney 293 (HEK293) cells was not accessible to protons, chymotrypsin or anti-green fluorescent protein antibody, demonstrating that GPR6 is primarily located in intracellular compartments. Similar intracellular localization of pHluorin-tagged GPR6 was found in striatal neurons, where endogenous GPR6 is expressed. Confirmation of Gs-mediated constitutive activity in HEK293 cells and striatal neurons led us to conclude that GPR6 can signal from intracellular compartments.  相似文献   

6.
7.
Mammalian ovarian G-protein-coupled receptor 1 (OGR1) is activated by some metals in addition to extracellular protons and coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebrafish OGR1, zebrafish GPR4, and human GPR4 (zOGR1, zGPR4, and hGPR4, respectively) could sense the metals and activate the intracellular signaling pathways. On one hand, we found that only manganese and cobalt of the tested metals stimulated SRE-promoter activities in zOGR1-overexpressed HEK293T cells. On the other hand, none of the metals tested stimulated the promoter activities in zGPR4- and hGPR4-overexpressed cells. The OGR1 mutant (H4F), which is lost to activation by extracellular protons, did not stimulate metal-induced SRE-promoter activities. These results suggest that zOGR1, but not GPR4, is also a metal-sensing G-protein-coupled receptor in addition to a proton-sensing G-protein-coupled receptor, although not all metals that activate hOGR1 activated zOGR1.  相似文献   

8.
9.
GPR35 is a G protein-coupled receptor expressed in the immune, gastrointestinal, and nervous systems in gastric carcinomas and is implicated in heart failure and pain perception. We investigated residues in GPR35 responsible for ligand activation and the receptor structure in the active state. GPR35 contains numerous positively charged amino acids that face into the binding pocket that cluster in two distinct receptor regions, TMH3-4-5-6 and TMH1-2-7. Computer modeling implicated TMH3-4-5-6 for activation by the GPR35 agonists zaprinast and pamoic acid. Mutation results for the TMH1-2-7 region of GPR35 showed no change in ligand efficacies at the K1.32A, R2.65A, R7.33A, and K7.40A mutants. However, mutation of arginine residues in the TMH3-4-5-6 region (R4.60, R6.58, R3.36, R(164), and R(167) in the EC2 loop) had effects on signaling for one or both agonists tested. R4.60A resulted in a total ablation of agonist-induced activation in both the β-arrestin trafficking and ERK1/2 activation assays. R6.58A increased the potency of zaprinast 30-fold in the pERK assay. The R(167)A mutant decreased the potency of pamoic acid in the β-arrestin trafficking assay. The R(164)A and R(164)L mutants decreased potencies of both agonists. Similar trends for R6.58A and R(167)A were observed in calcium responses. Computer modeling showed that the R6.58A mutant has additional interactions with zaprinast. R3.36A did not express on the cell surface but was trapped in the cytoplasm. The lack of surface expression of R3.36A was rescued by a GPR35 antagonist, CID2745687. These results clearly show that R4.60, R(164), R(167), and R6.58 play crucial roles in the agonist initiated activation of GPR35.  相似文献   

10.
Somatostatin (SST) and somatostatin receptors (SSTR) are widely distributed in lymphoid tissues. Here, we report on the stimulatory effects of SST in Epstein-Barr virus-immortalized B lymphoblasts. By RT-PCR, we demonstrated the exclusive expression of the somatostatin receptor isoform 2A (SSTR2A) in B lymphoblasts. Addition of SST rapidly increased the cytosolic free calcium concentration [Ca(2+)](i) maximally by about 200 nM, with an EC(50) of 1.3 nM, and stimulated the formation of inositol phosphates. Furthermore, SST increased binding of guanosine 5'-O-(3-thiotriphosphate) by 50% above basal. These effects were partly inhibited by pertussis toxin (PTX), which indicates the involvement of PTX-sensitive G proteins. We provide further evidence that Galpha(16,) a PTX-insensitive G protein confined to lymphohematopoietic cells, is involved in the otherwise unusual coupling of SSTR2A to phospholipase C activation. In addition, SST activated extracellular regulated kinases and induced a 3.5-fold stimulation of DNA synthesis and a 4.4-fold stimulation of B lymphoblast proliferation, which was accompanied by an enhanced immunoglobulin formation. Thus SST exerts a growth factor-like activity on human B lymphoblasts.  相似文献   

11.
Bimatoprost is the ethyl amide derivative of 17-phenyl-trinor prostaglandin F(2alpha). Here, we show that bimatoprost (K(i)=9250+/-846nM) and bimatoprost free acid (17-phenyl-trinor prostaglandin F(2alpha); K(i)=59+/-6nM) bind to the FP receptor and displace [(3)H]-travoprost acid, a selective FP agonist. Bimatoprost (EC(50)=3070+/-1330nM), Lumigan((R)) (bimatoprost 0.03% ophthalmic solution; EC(50)=1150+/-93nM) and bimatoprost acid (EC(50)=15+/-3nM) mobilized intracellular Ca(2+) ([Ca(2+)](i)) in <5s in HEK-293 cells expressing the cloned human ciliary body FP receptor on a fluorometric imaging plate reader (FLIPR). Furthermore, agonist effects of bimatoprost and bimatoprost acid were blocked by AL-8810 (11beta-fluoro-15-epi-15-indanyl prostaglandin F(2alpha); K(i)=0.7-2.1 MicroM), an FP receptor-selective antagonist. Therefore, the prodrug bimatoprost and its hydrolytic product, bimatoprost free acid, bind to and activate the human ocular FP prostaglandin receptor to mobilize [Ca(2+)](i), thus behaving as FP receptor agonists.  相似文献   

12.
The poorly characterized G-protein-coupled receptor GPR35 has been suggested as a potential exploratory target for the treatment of both metabolic disorders and hypertension. It has also been indicated to play an important role in immune modulation. A major impediment to validation of these concepts and further study of the role of this receptor has been a paucity of pharmacological tools that interact with GPR35. Using a receptor-β-arrestin-2 interaction assay with both human and rat orthologues of GPR35, we identified a number of compounds possessing agonist activity. These included the previously described ligand zaprinast. Although a number of active compounds, including cromolyn disodium and dicumarol, displayed similar potency at both orthologues of GPR35, a number of ligands, including pamoate and niflumic acid, had detectable activity only at human GPR35 whereas others, including zaprinast and luteolin, were markedly selective for the rat orthologue. Previous studies have demonstrated activation of Gα13 by GPR35. A Saccharomyces cerevisiae-based assay employing a chimaeric Gpa1-Gα13 G-protein confirmed that all of the compounds active at human GPR35 in the β-arrestin-2 interaction assay were also able to promote cell growth via Gα13. Each of these ligands also promoted binding of [35S]GTP[S] (guanosine 5'-[γ-[35S]thio]triphosphate) to an epitope-tagged form of Gα13 in a GPR35-dependent manner. The ligands identified in these studies will be useful in interrogating the biological actions of GPR35, but appreciation of the species selectivity of ligands at this receptor will be vital to correctly attribute function.  相似文献   

13.
We examined whether fusion proteins of G protein-coupled receptors with the alpha subunit of G(16) (Galpha(16)) could activate downstream signals. We expressed fusion proteins of G(i)-coupled receptors, i.e. CX(3)C chemokine receptor 1 (CX(3)CR1) and M(2) receptor, in Chinese hamster ovary cells. An agonist for CX(3)CR1 induced greater increases in intracellular Ca(2+) and prostaglandin E(2) generation in cells expressing CX(3)CR1-Galpha(16) fusion protein than in cells expressing CX(3)CR1 alone or both CX(3)CR1 and Galpha(16) separately. Similarly, agonist-induced prostaglandin E(2) generation was greater in cells expressing M(2)-Galpha(16) fusion protein than ones expressing M(2) alone or both M(2) and Galpha(16) separately. In cells expressing fusion proteins with Galpha(16) of G(q)-coupled receptors, i.e. urotensin II receptor and M(1) receptor, the relevant agonists induced similar increases in intracellular Ca(2+) and prostaglandin E(2) generation as in ones expressing the receptor alone. In cells expressing urotensin II receptor-Galpha(16) fusion protein, prostaglandin E(2) generation exhibited a lower EC(50) value than the intracellular Ca(2+) increase. These results indicate that agonist-stimulated receptor-Galpha(16) fusion proteins are coupled to downstream signaling pathways, and suggest that receptor-Galpha(16) fusion proteins may be useful for screening for ligands of orphan G protein-coupled receptors and G(i)-coupled receptors.  相似文献   

14.
ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999   总被引:15,自引:0,他引:15  
P2Y receptors are a class of G protein-coupled receptors activated primarily by ATP, UTP, and UDP. Five mammalian P2Y receptors have been cloned so far including P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11. P2Y1, P2Y2, and P2Y6 couple to the activation of phospholipase C, whereas P2Y4 and P2Y11 couple to the activation of both phospholipase C and the adenylyl cyclase pathways. Additional ADP receptors linked to Galpha(i) have been described but have not yet been cloned. SP1999 is an orphan G protein-coupled receptor, which is highly expressed in brain, spinal cord, and blood platelets. In the present study, we demonstrate that SP1999 is a Galpha(i)-coupled receptor that is potently activated by ADP. In an effort to identify ligands for SP1999, fractionated rat spinal cord extracts were assayed for Ca(2+) mobilization activity against Chinese hamster ovary cells transiently transfected with SP1999 and chimeric Galpha subunits (Galpha(q/i)). A substance that selectively activated SP1999-transfected cells was identified and purified through a series of chromatographic steps. Mass spectral analysis of the purified material definitively identified it as ADP. ADP was subsequently shown to inhibit forskolin-stimulated adenylyl cyclase activity through selective activation of SP1999 with an EC(50) of 60 nM. Other nucleotides were able to activate SP1999 with a rank order of potency 2-MeS-ATP = 2-MeS-ADP > ADP = adenosine 5'-O-2-(thio)diphosphate > 2-Cl-ATP > adenosine 5'-O-(thiotriphosphate). Thus, SP1999 is a novel, Galpha(i)-linked receptor for ADP.  相似文献   

15.
GPR35 is a rhodopsin-like G protein-coupled receptor identified in 1998. It has been reported that kynurenic acid, a tryptophan metabolite, may act as an endogenous ligand for GPR35. However, the concentrations of kynurenic acid required to elicit the cellular responses are usually high, raising the possibility that another endogenous ligand may exist. In this study, we searched for another endogenous ligand for GPR35. Finally, we found that the magnitude of the Ca2+ response induced by 2-acyl lysophosphatidic acid in the GPR35-expressing HEK293 cells was markedly greater than that in the vector-transfected control cells. Such a difference was not apparent in the case of 1-acyl lysophosphatidic acid. 2-Acyl lysophosphatidic acid also caused the sustained activation of RhoA and the phosphorylation of extracellular signal-regulated kinase, and triggered the internalization of the GPR35 molecule. These results strongly suggest that 2-acyl lysophosphatidic acid is an endogenous ligand for GPR35.  相似文献   

16.
The G protein-coupled receptor 119 (GPR119) is highly expressed in pancreatic β-cells. On activation, this receptor enhances the effect of glucose-stimulated insulin secretion (GSIS) via the elevation of intracellular cAMP concentrations. Although GPR119 agonists represent promising oral antidiabetic agents for the treatment of type 2 diabetes therapy, they suffer from the inability to adequately directly preserve β-cell function. To identify a new structural class of small-molecule GPR119 agonists with both GSIS and the potential to preserve β-cell function, we screened a library of synthetic compounds and identified a candidate molecule, AS1269574, with a 2,4,6-tri-substituted pyrimidine core. Here, we examined the preliminary in vitro and in vivo effects of AS1269574 on insulin secretion and glucose tolerance. AS1269574 had an EC50 value of 2.5 μM in HEK293 cells transiently expressing human GPR119 and enhanced insulin secretion in the mouse pancreatic β-cell line MIN-6 only under high-glucose (16.8 mM) conditions. This contrasted with the action of the sulfonylurea glibenclamide, which also induced insulin secretion under low-glucose conditions (2.8 mM). In in vivo studies, a single administration of AS1269574 to normal mice reduced blood glucose levels after oral glucose loading based on the observed insulin secretion profiles. Significantly, AS1269574 did not affect fed and fasting plasma glucose levels in normal mice. Taken together, these results suggest that AS1269574 represents a novel structural class of small molecule, orally administrable GPR119 agonists with GSIS and promising potential for the treatment of type 2 diabetes.  相似文献   

17.
A novel series of sulfonamide derivatives 3, the CB(2) receptor agonists, was synthesized and evaluated for activity against the human CB(2) receptor. We first identified sulfonamide 3a, which was obtained by random screening of our in-house chemical library as a moderately active (CB(2) IC(50)=340nM) CB(2) receptor agonist. We then attempted to test its analogues to identify compounds with a high affinity for the CB(2) receptor. One of these, compound 3f, exhibited high affinity for the human CB(2) receptor (IC(50)=16nM) and high selectivity for CB(2) over CB(1) (CB(1) IC(50)/CB(2)IC(50)=106), and behaved as a full CB(2) receptor agonist in the [(35)S]GTPgammaS binding assay (CB(2) EC(50)=7.2nM, E(max)=100%).  相似文献   

18.
A synthetic gene for the human motilin receptor containing 33 unique restriction sites was designed and stably coexpressed in HEK293 cells with the bioluminescent Ca(2+) indicator protein aequorin. The dose-dependent response of the receptor to motilin was demonstrated using transient transfections, and a stable cell line was selected. [(125)I]Motilin binding was used to estimate receptor expression level for the stable cell line, and titration of a membrane preparation indicated a K(d) value of 0.8 nM. The same cell line was used to evaluate a panel of erythromycin-derived agonists and provided EC(50) values for receptor activation that agree closely with data obtained in contractility assays. The peptide antagonist ANQ11125 (Phe3Leu13 motilin 1-14) inhibited motilin induced response with a K(i) value of 10 nM. The system is well-suited for the screening of compound libraries and receptor mutagenesis studies.  相似文献   

19.
A classical drug repurposing approach was applied to find new putative GPR40 allosteric binders. A two-step computational protocol was set up, based on an initial pharmacophoric-based virtual screening of the DrugBank database of known drugs, followed by docking simulations to confirm the interactions between the prioritised compounds and GPR40. The best-ranked entries showed binding poses comparable to that of TAK-875, a known allosteric agonist of GPR40. Three of them (tazarotenic acid, bezafibrate, and efaproxiral) affect insulin secretion in pancreatic INS-1 832/13 β-cells with EC50 in the nanomolar concentration (5.73, 14.2, and 13.5 nM, respectively). Given the involvement of GPR40 in type 2 diabetes, the new GPR40 modulators represent a promising tool for therapeutic intervention towards this disease. The ability to affect GPR40 was further assessed in human breast cancer MCF-7 cells in which this receptor positively regulates growth activities (EC50 values were 5.6, 21, and 14 nM, respectively).  相似文献   

20.
The regulation of G protein activation by the rat corticotropin-releasing factor receptor type 1 (rCRFR1) in human embryonic kidney (HEK)293 (HEK-rCRFR1) cell membranes was studied. Corresponding to a high and low affinity ligand binding site, sauvagine and other peptidic CRFR1 ligands evoked high and low potency responses of G protein activation, differing by 64-fold in their EC(50) values as measured by stimulation of [(35)S]GTPgammaS binding. Contrary to the low potency response, the high potency response was of lower GTPgammaS affinity, pertussis toxin (PTX)-insensitive, and homologously desensitized. Distinct desensitization was also observed in the adenylate cyclase activity, when its high potency stimulation was abolished and the activity became low potently inhibited by sauvagine. From these results and immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(s) and Galpha(i) subunits it is concluded that the high and low potency [(35)S]GTPgammaS binding stimulation reflected coupling to G(s) and G(i) proteins, respectively, only G(s) coupling being homologously desensitized. Immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(q/11) revealed additional coupling to G(q/11), which also was homologously desensitized. Although Galpha(q/11) coupling was PTX-insensitive, half of the sauvagine-stimulated accumulation of inositol phosphates in the cells was PTX-sensitive, suggesting involvement of G(i) in addition to G(q/11)in the stimulation of inositol metabolism. It is concluded that CRFR1 signals through at least two different ways, one leading to G(s)- and G(q/11)-mediated signaling steps and desensitization and another leading to G(i) -mediated signals without being desensitized. Furthermore, the concentrations of the stimulating ligand and GTP and desensitization may be part of a regulatory mechanism determining the actual ratio of the coupling of CRFR1 to different G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号