首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
From the 1970s to 1990s, more stringent air quality regulations were implemented across North America and Europe to reduce chemical emissions that contribute to acid rain. Surface water pH slowly increased during the following decades, but biological recovery lagged behind chemical recovery. Fortunately, this situation is changing. In the past few years, northeastern US fish populations have begun to recover in lakes that were historically incapable of sustaining wild fish due to acidic conditions. As lake ecosystems across the eastern United States recover from acid deposition, the stress to the most susceptible populations of native coldwater fish appears to be shifting from acidification effects to thermal impacts associated with changing climate. Extreme summer temperature events – which are expected to occur with increasing frequency in the coming century – can stress and ultimately kill native coldwater fish in lakes where thermal stratification is absent or highly limited. Based on data from northeastern North America, we argue that recovery from acid deposition has the potential to improve the resilience of coldwater fish populations in some lakes to impacts of climate change. This will occur as the amount of dissolved organic carbon (DOC) in the water increases with increasing lake pH. Increased DOC will reduce water clarity and lead to shallower and more persistent lake thermoclines that can provide larger areas of coldwater thermal refuge habitat. Recovery from acidification will not eliminate the threat of climate change to coldwater fish, but secondary effects of acid recovery may improve the resistance of coldwater fish populations in lakes to the effects of elevated summer temperatures in historically acidified ecosystems. This analysis highlights the importance of considering the legacy of past ecosystem impacts and how recovery or persistence of those effects may interact with climate change impacts on biota in the coming decades.  相似文献   

3.
4.
Ecological effects of climate change on terrestrial and marine ecosystems are increasingly apparent but evidence from freshwater is scarce, particularly in Asia. Using data from two subtropical Central China streams, we predicted the changes of some benthic macroinvertebrate communities under various climatic scenarios. Our results show that the average annual air temperature, in the study watershed, increased significantly (P < 0.05) by 0.6 °C over the last 30 years (1978–2007), whereas the average annual water flow declined by 30.9 m3 s–1. Based on the winter sampling of benthic macroinvertebrates at four stream locations over last six years, we observed that macroinvertebrate abundance and Margalef diversity dropped with increasing water temperatures or decreasing smoothed sea surface temperatures (SSST). The winter macroinvertebrate abundance and biodiversity declined by 11.1% and 6.8% for every 1 °C water temperature rise. In contrast, increases in future SSST by one unit would increase winter macroinvertebrate abundance and biodiversity by 38.2% and 16.0%, respectively. Although many dominant taxa were predicted to persist when water temperatures increase by 1 °C, several scarce taxa, e.g., Orthocladius clarkei and Hippeutis umbilicalis, could be at a level of potential local extinction. Our identification of these links, between climate change and stream macroinvertebrate communities, has wide implications for the conservation of mountain stream ecosystems in the upper Yangtze River under scenarios of climate change. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Endorheic lakes of the northern Great Plains encompass a wide range of environmental parameters (e.g., salinity, pH, DOC, Ca, nutrients, depth) that vary 1000‐fold among sites and through the past 2000 years due to variation in basin hydrology and evaporative forcing. However, while many environmental parameters are known to individually influence zooplankton diversity and taxonomic composition, relatively little is known of the hierarchical relationships among potential controls or of how regulatory mechanisms may change in response to climate variation on diverse scales. To address these issues, we surveyed 70 lakes within a 100 000 km2 prairie region to simulate the magnitude of environmental change expected to occur over 100–1000 years and to quantify the unique and interactive effects of diverse environmental parameters in regulating pelagic invertebrate community structure at that scale. Multivariate analyses showed that salinity was the principal correlate of changes in invertebrate composition among lakes, with a sequential loss of taxa between salinities of 4 and 50 g total dissolved solids L?1 until one to two species predominated in highly saline systems. In contrast, changes in the concentrations of Ca2+ and other mineral nutrients exerted secondary controls of invertebrate assemblages independent of salinity, whereas lake depth provided a tertiary regulatory mechanism structuring species composition. In contrast to these large‐scale hierarchical patterns, seasonal surveys (May, July, September) of a subset of 21 lakes in each of 2003–2005 revealed that annual meteorological variation had no measurable effect on pelagic invertebrates, despite large differences in temperature, precipitation, and evaporation arising from regional droughts. Together these findings show that pelagic invertebrate communities in saline lakes are resilient to interannual variability in climate, but suggest that lakes of the northern Great Plains may provide a sensitive model to forecast centennial effects of future climate change.  相似文献   

6.
张爽  高启晨  张戎  宋晨珲  栗忠飞 《生态学报》2024,44(10):4117-4128
湖泊湿地是地球上缓解全球变暖的巨大碳汇系统。在气候变化背景下,随着温度、降水等格局的改变,其碳汇功能存在高度的响应过程。基于135篇文献已发表的557项观测数据,运用meta分析的方法,分析全球尺度上气候及地理因素的相互作用对湖泊有机碳组分的影响,包括湖泊沉积物有机碳(Sediment Organic Carbon)、湖水中总有机碳(Total Organic Carbon)、湖水溶解有机碳(Dissolved Organic Carbon)和颗粒有机碳(Particulate Organic Carbon)。结果显示:1)在纬度3°49''N-76°24''N和海拔0-4500m范围内,SOC、TOC、POC和DOC的变化范围分别为0.25-15.6 g C/Kg、1.9-25.11 mg C/L、0.026-24 mg C/L、1-115.4 mg C/L;2)地理因素中,海拔与TOC呈显著的负相关(P < 0.05),每升高1m,TOC 增加0.0077 mg/L;纬度与POC呈显著负相关,与DOC呈显著正相关(P < 0.05),每增加1°,POC减少0.136 mg/L,DOC增加1.18 mg/L;3)气候因素中,年均温与SOC和POC呈显著的正相关,与DOC呈显著负相关(P < 0.05),每升高1℃,SOC和POC增加0.079 g/kg、0.36 mg/L,DOC下降1.52 mg/L;年均降水量与POC呈显著正相关,与DOC呈显著负相关(P < 0.05),每增加100mm,POC增加0.87 mg/L,DOC减少3 mg/L;4)气候和地理因素对SOC、TOC、POC、DOC综合影响的贡献度分别达到16.1%、14%、90%、61.6%;5)最热季度的降水对SOC的影响成正相关,其他季节性气候参数对湖水中TOC和SOC均无显著性影响;最冷季的降水因素是影响POC的主要因素,最潮湿月份、最潮湿季节的降水量和最冷季度的平均温度与POC呈显著正相关关系;最干燥月份、最干旱地区、最热季度和最冷季度的降水量对DOC的影响最显著。  相似文献   

7.
The aims of this study are (i) to identify areas in the Andean region where the climate will remain stable enough for the survival of the study species; (ii) to analyze how climate change will affect these areas under different climate scenarios; (iii) to generate spatially explicit predictive maps of the expansion or retraction of these areas; and (iv) based on this information, to identify areas with priority for conservation. The analysis was performed using presence‐only data for 14 Heteroptera and Odonata species. Current and future models were developed to identify areas where the climate would be suitable for small ponds, using Maxent v3.3.3k, with future models based on three different Global Climate Models for the 2050 period (scenarios A2a and B2a). Model performance was evaluated using the jackknife approach. Climatic niche breadth and climatic niche similarities were calculated through Levin's concentration metrics and the I statistic index (implemented in ENMTools), respectively. Maxent logistic outputs were converted into binary presence/absence maps, based on the ‘minimum training presence logistic threshold’, and used to build species richness maps for each condition considered (present and future). Current and future models with areas climatically suitable for small ponds were developed. All the study species proved to be narrow specialists and share similar climatic spaces. Our projections suggest that four of the species would not find suitable climate conditions for survival in the future. The priority area for conservation, where most species would find suitable climate conditions, is located between 33–47°S and 73–70°W. We identified future loss of the priority area towards the east and a small gain towards the north and south. The most probable situation for the year 2050 is a negative precipitation–evapotranspiration balance, and small ponds will probably be very short‐lived or dry completely during summer, suggesting a drastic change in species assemblages and species richness of the region, which could become a hotspot of extinction.  相似文献   

8.
9.
Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: “dispersal lags” affecting plant species’ spread along elevational gradients, “establishment lags” following their arrival in recipient communities, and “extinction lags” of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species’ range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide.  相似文献   

10.
11.
Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here, we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of North Carolina, USA to determine whether water yield has changed over time, and to examine and attribute the causal mechanisms of change. We found that annual water yield increased in some watersheds from 1938 to the mid‐1970s by as much as 55%, but this was followed by decreases up to 22% by 2013. Changes in forest evapotranspiration were consistent with, but opposite in direction to the changes in water yield, with decreases in evapotranspiration up to 31% by the mid‐1970s followed by increases up to 29% until 2013. Vegetation survey data showed commensurate reductions in forest basal area until the mid‐1970s and increases since that time accompanied by a shift in dominance from xerophytic oak and hickory species to several mesophytic species (i.e., mesophication) that use relatively more water. These changes in forest structure and species composition may have decreased water yield by as much as 18% in a given year since the mid‐1970s after accounting for climate. Our results suggest that changes in climate and forest structure and species composition in unmanaged forests brought about by disturbance and natural community dynamics over time can result in large changes in water supply.  相似文献   

12.
黄河上游不同干湿气候区植被对气候变化的响应   总被引:7,自引:0,他引:7       下载免费PDF全文
 研究气候变化背景下植被变化趋势及其与水热因子的关系, 对于黄河源区的生态恢复和生态建设具有重要意义。采用基于FAO Penman-Monteith的降水蒸散比来描述区域的干湿状况, 划分了黄河上游地区的干湿气候区。在此基础上, 利用AVHRR归一化植被指数(NDVI)和GLOPEM净初级生产力(NPP)数据集和同期的气候资料, 分析了黄河上游植被覆盖、植被生产力和气候变化的趋势, 探讨了不同干湿气候区影响植被变化的主要气候因子。结果表明, 研究区域东南部为半湿润气候区, 其余为半干旱气候区, 干湿气候分界线与450 mm降水等值线较接近; 1981–2006年区域气候趋于干暖化, 尤其是气温的升高趋势明显; 半湿润地区NDVI和NPP显著增加, 半干旱地区略有增加; 半湿润地区的NDVI多与气温显著正相关, 与降水量的相关性较弱, 气温是植被生长的主要气候制约因素; 半干旱地区的NDVI则与降水量的正相关性更强, 对降水量的变化较为敏感。NPP对气候变化的响应模式与NDVI相似。植被对气候变化的响应部分依赖于研究区域所具备的水热条件, 干湿气候划分有助于更好地解释植被对气候变化响应的空间差异。  相似文献   

13.
茶是对气候变化敏感的重要经济作物, 评价全球气候变化对茶分布和生产的影响对相关国家经济发展和茶农的生计至关重要。本研究基于全球858个茶分布点和6个气候因子数据, 利用物种分布模型预测全球茶的潜在适宜分布区及其在2070年的不同温室气体排放情景(RCP2.6和RCP8.5)下的变化。结果表明: 当前茶在五大洲均有适宜分布区, 主要集中在亚洲、非洲和南美洲, 并且最冷季平均温和最暖季降水量主导了茶的分布。预计2070年, 茶的适宜分布区变化在不同的大洲、国家和气候情景间将存在差异。具体来说, 茶的适宜分布区总面积将会减少, 减少的区域主要位于低纬度地区, 而中高纬度地区的适宜分布区将扩张, 由此可能导致茶的适宜分布区向北移动; 重要的产茶国中, 阿根廷、缅甸、越南等茶适宜分布区面积会减少57.8%-95.8%, 而中国和日本的适宜分布面积则会增加2.7%-31.5%。未来全球新增的适宜分布区中, 约有68%的地区土地覆盖类型为自然植被, 因此可能导致新茶树种植园的开垦和自然植被及生物多样性保护产生冲突。  相似文献   

14.
15.
Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First, we show that in old‐world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two‐step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present‐day species morphological response, suggesting that the ability of morphological evolution may play a role for species’ persistence under climate change. The possibility that present‐day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes and should also be considered when planning management actions favouring species persistence.  相似文献   

16.
1. The larger lakes of the English Lake District have been the subject of intensive scientific study for more than 60 years. Year‐to‐year variations in the weather have recently been shown to have a major effect on their physical characteristics. The area is mild but very wet and the dynamics of the lakes are strongly influenced by the movement of weather systems across the Atlantic. 2. Here, we combine the results of long‐term measurements and the projections from a Regional Climate Model (RCM) to assess the potential impact of climate change on the surface temperature and residence times of the lakes. 3. The RCM outputs used were produced by the U.K. Hadley Centre and are based on the IPCC ‘A2’ scenario for the emission of greenhouse gases. These suggest that winters in the area will be very much milder and wetter by the 2050s and that there will be a pronounced reduction in the summer rainfall. 4. An analysis of the meteorological data acquired between 1940 and 2000 shows that there have been progressive increases in the winter air temperature and in the rainfall which are correlated with the long‐term change in the North Atlantic Oscillation. The trends reported during the summer were less pronounced and were correlated with the increased frequency of anticyclonic days and a decrease in the frequency of westerly days in the British Isles. 5. A simple model of the year‐to‐year variations in surface temperatures showed that the highest winter temperatures were recorded in the deeper lakes and the highest summer temperatures in the lakes with the shallowest thermoclines. When this model was used to predict the surface temperatures of the lakes in the 2050s, the greatest winter increase (+1.08 °C) was observed in the shallowest lake and the greatest summer increase (+2.18 °C) in the lake with the shallowest thermocline. 6. The model used to estimate the seasonal variation in the residence time of the lakes showed that the most pronounced variations were recorded in lakes with a short residence time. Average winter residence times ranged from a minimum of 10 days to a maximum of 436 days and average summer values from a minimum of 23 days to a maximum of 215 days. When this model was used to predict the residence time of the lakes in the 2050s, the greatest winter decrease (−20%) was observed in the smallest lake and the greatest summer increase (+92%) in the lake with the shortest residence time. 7. The results are discussed in relation to trends reported elsewhere in Europe and the impact of changes in the atmospheric circulation on the dynamics of the lakes. The most serious limnological effects were those projected for the summer and included a general increase in the stability of the lakes and a decrease in the flushing rate of the lakes with short residence times.  相似文献   

17.
Climate change would have profound influences on community structure and composition, and subsequently has impacts on ecosystem functioning and feedback to climate change. A field experiment with increased temperature and precipitation was conducted to examine effects of experimental warming, increased precipitation and their interactions on community structure and composition in a temperate steppe in northern China since April 2005. Increased precipitation significantly stimulated species richness and coverage of plant community. In contrast, experimental warming markedly reduced species richness of grasses and community coverage. Species richness was positively dependent upon soil moisture (SM) across all treatments and years. Redundancy analysis (RDA) illustrated that SM dominated the response of community composition to climate change at the individual level, suggesting indirect effects of climate change on plant community composition via altering water availability. In addition, species interaction also mediated the responses of functional group coverage to increased precipitation and temperature. Our observations revealed that both abiotic (soil water availability) and biotic (interspecific interactions) factors play important roles in regulating plant community structure and composition in response to climate change in the semiarid steppe. Therefore these factors should be incorporated in model predicting terrestrial vegetation dynamics under climate change.  相似文献   

18.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.  相似文献   

19.
We projected effects of mid‐21st century climate on the early life growth of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Omykiss) in western United States streams. Air temperature and snowpack trends projected from observed 20th century trends were used to predict future seasonal stream temperatures. Fish growth from winter to summer was projected with temperature‐dependent models of egg development and juvenile growth. Based on temperature data from 115 sites, by mid‐21st century, the effects of climate change are projected to be mixed. Fish in warm‐region streams that are currently cooled by snow melt will grow less, and fish in suboptimally cool streams will grow more. Relative to 20th century conditions, by mid‐21st century juvenile salmonids' weights are expected to be lower in the Columbia Basin and California Central Valley, but unchanged or greater in coastal and mountain streams. Because fish weight affects fish survival, the predicted changes in weight could impact population fitness depending on other factors such as density effects, food quality and quantity changes, habitat alterations, etc. The level of year‐to‐year variability in stream temperatures is high and our analysis suggests that identifying effects of climate change over the natural variability will be difficult except in a few streams.  相似文献   

20.
Photosynthesis in C3 plants is CO2 limited and therefore any increase in Rubisco carboxylation substrate may increase net CO2 fixation, unless plants experience acclimation or other limitations. These aspects are largely unexplored in grapevine. Photosynthesis analysis was used to assess the stomatal, mesophyll, photochemical and biochemical contributions to the decreasing photosynthesis observed in Tempranillo grapevines (Vitis vinifera) from veraison to ripeness, modulated by CO2, temperature and water availability. Photosynthesis and photosystem II photochemistry decreased from veraison to ripeness. The elevated CO2 and temperature increased photosynthesis, but transiently, in both well irrigated (WI) and water‐stressed plants. Photosynthetic rates were maxima 1 week after the start of elevated CO2 and temperature treatments, but differences with treatments of ambient conditions disappeared with time. There were not marked changes in leaf water status, leaf chlorophyll or leaf protein that could limit photosynthesis at ripeness. Leaf total soluble sugars remained at ripeness as high as 2 weeks after the start of treatments. On the other hand, and as expected, CO2 diffusional limitations impaired photosynthesis in grapevine plants grown under water scarcity, stomatal and mesophyll conductances to CO2 decreased and in turn low chloroplastic CO2 concentrations limited photosynthetic CO2 fixation. In summary, photochemistry and photosynthesis from veraison to ripeness in Tempranillo grapevine were dominated by a developmental‐related decreasing trend that was only transiently influenced by elevated CO2 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号