首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The organization of repeated DNA sequences in the human genome   总被引:2,自引:1,他引:1  
  相似文献   

3.
A family of dispersed repeats longer than 7 kilobase pairs (kbp) has been identified in the very large genome of Lilium henryi, and two subregions cloned. Initially a rapidly reannealing probe (C0t<1 M s) was prepared by hydroxyapatite chromatography. Half the copies of all sequences repeated 15000 times per genome are expected to reanneal by this C0t value. The probe hydridized to abundant fragments of 2, 5, and 7 kbp released from genomic DNA by Bam HI digestion. Twelve 2-kb fragments and ten 5-kb sequences were cloned into pBR322. Restriction mapping of the two sets of clones showed individual members to be quite similar. Length variation was no more than 200 base pairs (bp) between repeats, and consensus sites were present on 80%–90% of occasions. In situ hybridization using representative 2-kbp and 5-kbp clones showed each sequence to be dispersed throughout all chromosomal regions. Studies on the genomic organization suggested that the 2-kbp and 5-kbp sequences are usually adjacent, and that occasional absence of the internal Bam HI site results in the release of the 7-kbP fragment. There are at least 13000 copies of the full repeat per L. henryi genome, thus accounting for approximately 0.3% of the total of 32 million kbp.  相似文献   

4.
Repetitive DNA sequences near immunoglobulin genes in the mouse genome (Steinmetz et al., 1980a,b) were characterized by restriction mapping and hybridization. Six sequences were determined that turned out to belong to a new family of dispersed repetitive DNA. From the sequences, which are called R1 to R6, a 475 base-pair consensus sequence was derived. The R family is clearly distinct from the mouse B1 family (Krayev et al., 1980). According to saturation hybridization experiments, there are about 100,000 R sequences per haploid genome, and they are probably distributed throughout the genome. The individual R sequences have an average divergence from the consensus sequence of 12.5%, which is largely due to point mutations and, among those, to transitions. Some R sequences are severly truncated. The R sequences extend into A-rich sequences and are flanked by short direct repeats. Also, two large insertions in the R2 sequence are flanked by direct repeats. In the neighbourhood of and within R sequences, stretches of DNA have been identified that are homologous to parts of small nuclear RNA sequences. Mouse satellite DNA-like sequences and members of the B1 family were also found in close proximity to the R sequences. The dispersion of R sequences within the mouse genome may be a consequence of transposition events. The possible role of the R sequences in recombination and/or gene conversion processes is discussed.  相似文献   

5.
《Plant science》1988,55(1):43-52
Reassociation of high molecular weight rice DNA has revealed the occurrence of long stretches of repeated DNA which are not interrupted by single copy DNA even at a fragment length as high as 20 kilo base pairs (kbp). Majority of these repeated sequences are unusually G + C rich and show significant variations in their thermal stability. Homology studies indicate that short repeats may have evolved from long repeats in total repetitive DNA while they may be of different origin in highly repetitive DNA fraction. Restriction enzyme analysis shows the occurrence of Ava I and EcoR V repeat families.  相似文献   

6.
Summary HRS60.1, a monomer unit (184 bp) of a highly repeated nuclear DNA sequence of Nicotiana tabacum, has been cloned and sequenced. Following BamHI digestion of tobacco DNA, Southern hybridization with HRS60.1 revealed a ladder of hybridization bands corresponding to multiples of the basic monomer unit. If the tobacco DNA was digested with restriction endonucleases which have no target site in HRS60.1, the larger part of DNA homologous to HRS60.1 remained as uncleaved relic DNA. These results suggest a tandem arrangement of this DNA repeat unit. Four other clones of tobacco nuclear DNA cross-hybridized with HRS60.1, thus forming a HRS60-family. Sequencing their inserts has shown their strong mutual homology. HRS60-family comprised about 2% of the nuclear genome of N. tabacum. Computer comparisons with other tandem plant-repeated DNA sequences could not detect any other homologous sequence.  相似文献   

7.
By means of restriction enzymes analysis and molecular hybridization, the distribution of repeated DNA families has been studied in the different DNA components into which the human genome can be fractionated by density gradient techniques. Three classes of DNA molecules have been analyzed: i) an homogeneous DNA component (satellite-like sequences; Q = 1.696 g/cm3, 3% of total DNA, AT repeated), ii) AT rich (Q = 1.698 g/cm3, 30% of total DNA, AT main-band) and GC rich (Q = 1.708 g/cm3, 6% of total DNA, GC main-band) DNA components. By this approach we have observed that Sau3A digestion of GC main-band gives rise to two bands of 75bp and 150bp, absent or under-represented in both AT rich DNA components. A preliminary characterization of these DNA fragments suggests that they contain one or more families of repeated sequences which fail to hybridize to EcoRI, HindIII and AluI families of repeats. In addition, we have observed that EcoRI sequences (alpha-RI DNA) are under-represented in GC main-band and show the same clustered organization in both AT rich DNA components.  相似文献   

8.
Either aphidicolin- or thymidine-synchronized human HL-60 cells were used to study the replication pattern of a family of human repetitive DNA sequences, the EcoRI 340 bp family (αRI-DNA), and of the ladders of fragments generated in total human DNA after digestion with XbaI and HaeIII (alpha satellite sequences). DNAs replicated in early, middle-early, middle-late and late S periods were labelled with BUdR or with [3H]thymidine. The efficiency of the cell synchronization procedure was confirmed by the transition from a high-GC to a high-AT average base composition of the DNA synthesized going from early to late S periods. By hybridizing EcoRI 340 bp repetitive fragments to BUdR-DNAs it was found that this family of sequences is replicated throughout the entire S period. Comparing fluorograph densitometric scans of [3H]DNAs to the scans of ethidium bromide patterns of total HL-60 DNA digested with XbaI and HaeIII, it was observed that DNA synthesized in different S periods is characterized by approximately the same ladder of fragments, while the intensity of each band may vary through the S phase; in particular, the XbaI 2.4 kb fragment becomes undetectable in late S.  相似文献   

9.
The dominant family of interspersed repetitive DNA sequences in the human genome has been termed the Alu family. We have found that more than 75% of the lambda phage in a recombinant library representing an African green monkey genome hybridize with a human Alu sequence under stringent conditions. A group of clones selected from the monkey library with probes other than the Alu sequence were analyzed for the presence and distribution of Alu family sequences. The analyses confirm the abundance of Alu sequences and demonstrate that more than one repeat unit is present in some phages. In the clones studied, the Alu units are separated by an average of 8 kilobase pairs of unrelated sequences. The nucleotide sequence of one monkey Alu sequence is reported and shown to resemble the human Alu sequences closely. Hence, the sequence, dispersion pattern, and copy number of the Alu family members are very similar in the African green monkey and human genomes. Among the clones investigated were two that contain segments of the satellite DNA term alpha-component joined to non alpha-component DNA. The experiments indicate that in the monkey genome Alu sequences can occur close to regions of alpha-component DNA.  相似文献   

10.
The previously cloned Drosophila genome fragment Dm665 (2.4 kb) hybridizing with telomers on polytene chromosomes is a representative of the family of repeats, a part of which being organized in tandem clusters. The repeats are not transcribed in cell culture, are species-specific and represented in 200-250 copies per haploid genome. In natural and laboratory Drosophila lines polymorphism has been revealed with regard to homology with Dm665 in the telomeres.  相似文献   

11.
Simple repeated sequences in human satellite DNA.   总被引:6,自引:1,他引:6       下载免费PDF全文
In an extensive analysis, using a range of restriction endonucleases, HinfI and TaqI were found to differentiate satellites I, II and III & IV. Satellite I is resistant to digestion by TaqI, but is cleaved by HinfI to yield three major fragments of approximate size 770, 850 and 950bp, associated in a single length of DNA. The 770bp fragment contains recognition sites for a number of other enzymes, whereas the 850 and 950bp fragments are "silent" by restriction enzyme analysis. Satellite II is digested by HinfI into a large number of very small (10-80bp) fragments, many of which also contain TaqI sites. A proportion of the HinfI sites in satellite II have the sequence 5'GA(GC)TC. The HinfI digestion products of satellites III and IV form a complete ladder, stretching from 15bp or less to more than 250bp, with adjacent multimers separated by an increment of 5bp. The ladder fragments do not contain TaqI sites and all HinfI sites have the sequence 5'GA(AT)TC. Three fragments from the HinfI ladder of satellite III have been sequenced, and all consist of a tandemly repeated 5bp sequence, 5'TTCCA, with a non-repeated, G+C rich sequence, 9bp in length, at the 3' end.  相似文献   

12.
We have determined the base sequence of several cloned Alu family members from the DNAs of a new world monkey (owl monkey) and a prosimian (galago). The three owl monkey Alu family members reported here belong to a single 300 base pair consensus sequence which closely resembles the human Alu family consensus. The galago Alu family members can best be represented as belonging to either of two related but distinct consensus sequences. One of the two galago Alu family subgroups (Type I) more accurately resembles the human consensus sequence than does the other subgroup (Type II). In this work we compare base sequences of human and galago Type I Alu family members. There are several examples of species-specific differences between the human and Type I galago sequences indicating that the Alu family members are effectively homogenized within a species.  相似文献   

13.
The recombinant plasmid dpTa1 has an insert of relic wheat DNA that represents a family of tandemly organized DNA sequences with a monomeric length of approximately 340 bp. This insert was used to investigate the structural organization of this element in the genomes of 58 species within the tribe Triticeae and in 7 species representing other tribes of the Poaceae. The main characteristic of the genomic organization of dpTa1 is a classical ladder-type pattern which is typical for tandemly organized sequences. The dpTa1 sequence is present in all of the genomes of the Triticeae species examined and in 1 species from a closely related tribe (Bromus inermis, Bromeae). DNA from Hordelymus europaeus (Triticeae) did not hybridize under the standard conditions used in this study. Prolonged exposure was necessary to obtain a weak signal. Our data suggest that the dpTa1 family is quite old in evolutionary terms, probably more ancient than the tribe Triticeae. The dpTa1 sequence is more abundant in the D-genome of wheat than in other genomes in Triticeae. DNA from several species also have bands in addition to the tandem repeats. The dpTa1 sequence contains short direct and inverted subrepeats and is homologous to a tandemly repeated DNA sequence from Hordeum chilense.  相似文献   

14.
The repeated sequences in oats DNA have been used to study chromosomal repeated sequence organisation in wheat. Approximately 75% of the wheat genome consists of repeated sequences but only approximately 20% will form heteroduplexes with repeated sequences from oats DNA at 60 degrees C in 0.18 M Na+. The proportion of wheat DNA that forms heteroduplexes with oats DNA is shown to be independent of the wheat DNA fragment length. However, the proportion of wheat DNA that is retained with the heteroduplexes when fractionated on hydroxyapatite is very dependent upon the wheat fragment length up to 3500 nucleotides. This is because more non-renatured wheat DNA is attached to the heteroduplexes with longer fragments. The results indicate that the repeated sequences in the wheat genome homologous to repeated sequences in oats are not clustered in the chromosomes but distributed amongst other repeated and possible non-repeated sequences.  相似文献   

15.
A series of human neuroectodermal tumors, all containing more than the normal diploid DNA, and each with its own distinct chromosome mode, were studied using restriction enzyme cleavage and specific DNA sequence hybridization. Methods described were quite sensitive and quantitative and as few as 40 molecules with a given restriction site were reproducibly detected in total nuclear DNA. Analysis of several fluorescent gel bands associated with different chromosomal domains revealed no changes between any of the tumor and normal cells. Specific probe hybridization, using purified complex repeating sequences, indicated fidelity of base sequence, as well as preservation of the relative amounts of each of a number of minor related multimers in both the tumor and normal cells. Centromeric regions containing arrays of such sequences may be maintained in these tumor cells and furthermore it is possible that some of these cells are polyploid with respect to DNA sequences, rather than aneuploid as their chromosome profiles suggest.This paper is dedicated to the late H.S.N. Greene, our inspired teacher  相似文献   

16.
Long interspersed repeated sequences of the mouse genome   总被引:1,自引:0,他引:1  
Long interspersed repeated sequences of the mouse genome can be prepared by digesting reassociated DNA with single-strand nuclease. Length resolution reveals many discrete bands that can be assigned to 15 kbp and 6 kbp groups. The reassociated 6 kbp group (which we identify with the MIF-1 family) possesses significant sequence heterogeneity, evidenced by the production of several smaller fragments upon single-strand nuclease digestion of heteroduplexes. The sites of sequence heterogeneity are relatively few and can be mapped using additional restriction endonuclease cuts. We have mapped additional restriction sites into this group, particularly within a cloned HindIII 400 bp fragment, and have also clearly mapped one end of this relatively homogeneous long interspersed repeated sequence.  相似文献   

17.
The hybridization of human DNA with three non-cross-hybridizing monomers (68 bp in length) of the heterochromatic Sau3A family of DNA repeats, indicates the coexistence within a Sau3A-positive genomic block of divergent Sau3A units as well as of unrelated sequences. To gain some insight into the structure of these human heterochromatic DNA regions, three previously cloned Sau3A-positive genomic fragments (with a total length of approximately 1900 base-pairs (bp] were sequenced. The analysis of the sequences showed the presence of clustered Sau3A units with different degrees of divergence and of two DNA regions of approximately 100 bp and 291 bp in length, unrelated to the family of repeats. A consensus sequence derived from the 24 identified Sau3A monomers presents, among highly variable regions, two less variant regions of 8 bp and 10 bp in length, respectively. The Sau3A-unrelated DNA fragment 291 bp in length, used as a probe on genomic DNA digested with a series of restriction enzymes, defines a "new" family of DNA repeats possessing periodicities for HaeIII (HaeIII family). Sau3A and HaeIII repeats display a high degree of linkage in a collection of Sau3A-positive genomic recombinant phages.  相似文献   

18.
The distribution of interspersed repetitive DNA sequences in the human genome   总被引:25,自引:0,他引:25  
The distribution of interspersed repetitive DNA sequences in the human genome has been investigated, using a combination of biochemical, cytological, computational, and recombinant DNA approaches. "Low-resolution" biochemical experiments indicate that the general distribution of repetitive sequences in human DNA can be adequately described by models that assume a random spacing, with an average distance of 3 kb. A detailed "high-resolution" map of the repetitive sequence organization along 400 kb of cloned human DNA, including 150 kb of DNA fragments isolated for this study, is consistent with this general distribution pattern. However, a higher frequency of spacing distances greater than 9.5 kb was observed in this genomic DNA sample. While the overall repetitive sequence distribution is best described by models that assume a random distribution, an analysis of the distribution of Alu repetitive sequences appearing in the GenBank sequence database indicates that there are local domains with varying Alu placement densities. In situ hybridization to human metaphase chromosomes indicates that local density domains for Alu placement can be observed cytologically. Centric heterochromatin regions, in particular, are at least 50-fold underrepresented in Alu sequences. The observed distribution for repetitive sequences in human DNA is the expected result for sequences that transpose throughout the genome, with local regions of "preference" or "exclusion" for integration.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号