首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract 1 The presence and abundance of arthropods were compared in three olive orchards under organic, integrated and conventional management regimes. In each olive orchard, trees were sampled in the canopy by beating branches and soil arthropods by placing pitfall traps. Contrary to expectations, the highest abundance of arthropods occurred in the integrated management orchard. The most abundant groups were Formicidae and the species Euphyllura olivinae (Homoptera: Psyllidae). 2 Canopies and the soil under the tree canopy (interior soil) were selected as the most informative sites for sampling. The months with the strongest differences were May, June and July, especially June. In the canopy, Araneae, Coleoptera, Diptera, Heteroptera, Hymenoptera, Homoptera, Lepidoptera, Neuroptera and Thysanoptera were the most abundant, and showed significant differences in abundance among orchards with different management regimes. Moreover, in the canopies, Coleoptera and Lepidoptera showed a seasonal pattern of abundance and consistent significant differences between the organic orchard vs. the integrated and conventional ones in both years of study. In the soil, 12 orders showed significant differences in abundance among management regimes at some point of the sampling season. 3 In a search for biological indicators that could help to distinguish between management regimes, a discriminant analysis applied to the data indicated that only the samples from the canopy were classified according to their management regime in a consistent way over time. The groups selected by the analysis to establish differences among management regimes were Coleoptera, Diptera, Heteroptera, Lepidoptera and Thysanoptera. The analysis applied to compare organic vs. non‐organic olive orchards, again identified Coleoptera and Lepidoptera as suitable groups. The results suggest that these two orders are potential bioindicators to distinguish, in a simple way, organic olive orchards from non‐organic ones.  相似文献   

2.
Acacia trees in Costa Rica have an obligate mutualism with three species of Pseudomyrmex ants, which vigorously defend their host tree from insect and mammalian herbivores. Depending on the size and species of ant colony, individual acacia trees may be differentially protected. For animals able to discern between weakly and highly aggressive ant colonies, costs of ant stings from less active colonies might be offset by nutritional value acquired from feeding on acacia fruit or ant larvae in swollen thorns. We examined foraging selectivity of capuchin monkeys on acacia trees in Santa Rosa National Park, Costa Rica. We measured four characteristics of the acacia trees from which capuchins fed and of acacias immediately adjacent to those in which the monkeys fed: diameter at breast height (DBH), accessibility, species of closest tree and ant species present. We found that capuchins prefer to forage in acacias that are large and accessible. We also made two measurements of ant colony activity on each tree, one before and one after disturbing the ant colony. We found that the three species of mutualistic ants differ in baseline activity levels and that mutualistic ants are more active than non-mutualistic ant species found in acacia trees. We also found that capuchins foraged more frequently in trees colonized by non-mutualistic ants, but the explanatory value (r 2) of this model was low. Furthermore, monkeys did not discriminate between acacias on the basis of baseline ant activity or the ant colony’s response to disturbance. We conclude that these monkeys select acacia trees in which to forage based on characteristics of the trees rather than the ants. In addition, our study suggests that white-faced capuchins act as predators on the acacia ants but they probably benefit the dispersal and reproductive success of acacia trees. Capuchins may in fact function as an additional mutualistic partner for acacia trees via seed dispersal, but they must overcome the ants’ defense of the trees to do so.  相似文献   

3.
The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees. However, the composition of ant and beetle communities differed greatly between the agroforest and forest sites. Forest beetles suffered profoundly from the conversion to agroforests: only 12.5% of the beetle species recorded in the forest sites were also found in the agroforests and those species made up only 5% of all beetles collected from cacao. In contrast, forest ants were well represented in agroforests, with 75% of all species encountered in the forest sites also occurring on cacao. The reduction of shade tree diversity had no negative effect on ants and beetles on cacao trees. Beetle abundances and non-forest ant species richness even increased with decreasing shade tree diversity. Thinning of the shade canopy was related to a decrease in richness of forest ant species on cacao trees but not of beetles. The contrasting responses of ants and beetles to shade tree management emphasize that conservation plans that focus on one taxonomic group may not work for others. Overall ant and beetle diversity can remain high in shaded agroforests but the conservation of forest ants and beetles in particular depends primarily on the protection of natural forests, which for forest ants can be complemented by the conservation of adjacent shaded cacao agroforests.  相似文献   

4.
The tree community of both canopy gaps and mature forest was surveyed in a 5 ha plot of cloud forest in the Ibitipoca Range, south-eastern Brazil, aiming at: (a) comparing the tree community structure of canopy gaps with that of three strata of the mature forest, and (b) relating the tree community structure of canopy gaps with environmental and biotic variables. All saplings of canopy trees with 1–5 m of height established in 31 canopy gaps found within the plot were identified and measured. Mature forest trees with dbh 3 cm were sampled in four 40×40 quadrats laid on the four soil sites recognised in the local soil catena. All surveyed trees were identified, measured and distributed into three forest strata: understorey (<5 m of height), sub-canopy (5.1–15 m) and canopy (15.1–30 m). The following variables were obtained for each gap: mode of formation, age, soil site, slope grade, size, canopy openness and abundance of bamboos and lianas. A detrended correspondence analysis indicated that the tree community structure of gaps in all soil sites was more similar to that of the mature forest understorey, suggesting that the bank of immatures plays an important role in rebuilding the forest canopy and that gap phases may be important for understorey shade-tolerant species. There was evidence of gap-dependence for establishment for only one canopy tree species. Both canonical correspondence analysis and correlation analysis demonstrated for a number of tree species that the distribution of their saplings in canopy gaps was significantly correlated with two variables: soil site and canopy openness. The future forest structure at each gap is probably highly influenced by both the present structure of the adjacent mature forest and the gap creation event.  相似文献   

5.
6.
Discussion of the vertical stratification of organisms in tropical forests has traditionally focused on species distribution. Most studies have shown that, due to differences in abiotic conditions and resource distribution, species can be distributed along the vertical gradient according to their ecophysiological needs. However, the network structure between distinct vertical strata remains little-explored. To fill this gap in knowledge, we used baits to sample ants in the canopy and understorey trees of a Mexican tropical rain forest to record the ant–tree co-occurrences. We examined the ant–tree co-occurrences in the canopy and understorey using complementary network metrics (i.e., specialization, interaction diversity, modularity, and nestedness). In addition, we evaluated co-occurrence patterns between ant species on trees, using C-score analysis. In general, we found no differences in the network structure, although the interaction diversity was greater in the understorey than in the canopy networks. We also observed that co-occurrence networks of each vertical stratum featured four ant species in the central core of highly co-occurring species, with three species unique to each stratum. Moreover, we found a similar trend toward ant species segregation in the both strata. These findings reveal a similar pattern of ant–ant co-occurrences in both vertical strata, probably due to the presence of arboreal-nesting ants in the understorey. Overall, we showed that despite the marked differences in species composition and environmental conditions between understorey and canopy strata, ant–tree co-occurrences in these habitats could be governed by similar mechanisms, related to dominance and resource monopolization by ants.  相似文献   

7.
Olive productivity should be improved through stimulating nutrition, particularly under poor fertility soils. Consequently, the objective of this study was to assess the efficacy of applying organic and bio-fertilizers on the physiological growth, yield and fruit quality of olive trees under newly reclaimed poor-fertility sandy soil in an arid environment. During a field experiment carried out at El-Qantara, North Sinai, Egypt over two consecutive seasons (2019–2020 and 2020–2021), olive Kalamata trees were evaluated under three organic fertilizer treatments alone or in combination with three bio-fertilizers treatments. Organic fertilizer was applied as goat manure (16.8 kg/tree/year), or olive pomace (8.5 kg/tree/year) in mid-December of each season vs. untreated trees. The bio-fertilizers were applied as N-fixing bacteria (150 g/tree) was inculated in early March of each season, or amino acid mixture (1.5%) was applied three times, at 70% of full bloom, 21 days after full bloom, and a month later in comparison to a non-fertilized trees (control). The cultivar used was Kalamata, a dual-purpose cultivar for oil and table olives whose value increases when processed as table olives. The results indicated that the goat manure followed by olive pomace significantly enhanced photosynthetic pigments (chlorophyll a, b, and carotenoids), leaf mineral contents (N, P, K, Ca, Mg and Fe), tree canopy volume, number of flowers per inflorescence, number of inflorescences per shoot, initial fruit set, fruit retention. For fruit quality, fruit length and width, fruit weight, and total fruit yield was increased compared to the non-fertilized control. Likewise, The bio-fertilizer N-fixing bacteria followed by the amino acid mixture significantly improved all of the aforementioned parameters. Accordingly, it is recommended, both environmentally and economically to utilize organic and bio-fertizers, particularly goat manure combined with N-fixing bacteria, in low-fertility soil to sustain olive production as well as reducing mineral fertilization.  相似文献   

8.
It has been argued that canopy trees in tropical rainforests harbor species-rich ant assemblages; however, how ants partition the space on trees has not been adequately elucidated. Therefore, we investigated within-tree distributions of nest sites and foraging areas of individual ant colonies on canopy trees in a tropical lowland rainforest in Southeast Asia. The species diversity and colony abundance of ants were both significantly greater in crowns than on trunks. The concentration of ant species and colonies in the tree crown seemed to be associated with greater variation in nest cavity type in the crown, compared to the trunk. For ants nesting on canopy trees, the numbers of colonies and species were both higher for ants foraging only during the daytime than for those foraging at night. Similarly, for ants foraging on canopy trees, both values were higher for ants foraging only during the daytime than for those foraging at night. For most ant colonies nesting on canopy trees, foraging areas were limited to nearby nests and within the same type of microhabitat (within-tree position). All ants foraging on canopy trees in the daytime nested on canopy trees, whereas some ants foraging on the canopy trees at night nested on the ground. These results suggest that spatial partitioning by ant assemblages on canopy trees in tropical rainforests is affected by microenvironmental heterogeneity generated by three-dimensional structures (e.g., trees, epiphytes, lianas, and aerial soils) in the crowns of canopy trees. Furthermore, ant diversity appears to be enriched by both temporal (diel) and fine-scale spatial partitioning of foraging activity.  相似文献   

9.
Abstract. Large isolated trees are a common feature of the agricultural landscape in humid tropical regions originally covered by rain forest. These isolated trees are primarily used as a source of shade for cattle and people. 13 pastures (totalling ca. 80 ha) currently used as cattle pasture were studied. In them, we registered 265 isolated trees belonging to 57 species. 50 trees of the most frequent species (Ficus spp. n = 30 and Nectandra ambigens n = 20) were selected to examine the influence of isolated trees on floristic composition and vegetation structure in the pastures. At each tree, three 4–m2 quadrats were sampled: under the canopy, directly under the canopy perimeter, and beyond the canopy in the open pasture. Under-canopy vegetation was structurally and floristically different from the other two sampling sites. Mean species richness per quadrat was significantly higher under the canopy (17.8 ± 4.3 SD) than at the canopy perimeter (11.2 ± 3.4) and in the open pasture (10.6 ± 3.6) sites. Stem density was higher at under-canopy sites, where greater proportions of endozoochorous and rain-forest species were found. Isolated trees function as nursery plants for rain-forest species by facilitating the establishment of zoochorous species whose seeds are deposited under the tree canopies by frugivorous birds or bats. Our results imply that isolated trees may play a major role in seed dispersal and establishment of native species, which is of consequence for the preservation of rain-forest species in these fragmented landscapes.  相似文献   

10.
1 Stable isotopes signatures (δ13C and δ15N) of the most important tree‐dwelling ants in an olive orchard were examined, together with the signatures of the most common herbivores, predators and sap‐sucking insects. The olive orchard consists of separate subunits (trees) surrounded by a matrix of grasses or bare ground, and the role of ants in such a system is not fully understood. 2 None of the selected ant species was exclusive to the olive trees because they were also observed foraging on vegetation (mainly thistle) under the tree crowns. Hence, the relative contributions of these two sources of energy (olive trees versus herbs/grasses) were assessed by comparing the δ13C of ants with the signatures of plants and those of other arthropods collected on the trees and on nearby thistles. Next, the trophic level occupied by the ants and their ecological role within the olive food web were determined by examining the δ15N values and their relationship with indices of ecological performance measuring the potential pressure exerted by each species on the ecosystem. 3 The analysis of 13C signatures revealed a different contribution of the two energy sources, olive trees versus herbs and grasses, with the former being more important for ants. The analysis of 15N signatures suggested separate roles for different ant species: some (Crematogaster scutellaris, Lasius lasioides) occupied a higher trophic level, mostly involved in predation, whereas others (Camponotus piceus, Camponotus lateralis) occupied a lower level, probably involved more in homopteran tending. A fifth species (Camponotus aethiops) was in an intermediate position. Finally, the δ15N levels of the species were significantly correlated with indices of ecological performance.  相似文献   

11.
Canopy connectivity influences foraging, movement, and competition in arboreal ant communities. Understanding how canopy connectivity affects arboreal ant communities could inform the development of management practices that maximize services from known biocontrol agents. We experimentally manipulated connectivity between the crowns of large shade trees to investigate the effects of canopy connectivity on arboreal ant species richness and composition in a coffee agroecosystem. A linear mixed-effects analysis showed that the number of species observed at baits set in tree crowns increased significantly after the crowns had been connected with nylon ropes. Crowns that were connected increased in similarity of ant species composition, particularly between adjacent connected crowns. Connectivity may increase the number of species present in tree crowns by allowing ants to move and forage in the canopy while bypassing trunks with more aggressive, territorial species such as Azteca sericeasur. Because twig-nesting species in the upper canopy have been shown to act as biocontrol agents of herbivores, an increase in species richness in tree crowns could have positive implications for agricultural pest-control services.  相似文献   

12.
Main processes governing the plant-soil interactions in adult olive (Olea europaea L.) trees under fertigation were studied to better understand the response of the trees to this agricultural practice widely used in new olive orchards. Our final objective was to obtain soundly based scientific evidences for a rational choice of the fertilizer dose. Measurements were made in a ‘Manzanilla de Sevilla’ olive orchard in which 200 g N, 400 g N and 600 g N per tree and irrigation period (T200, T400 and T600, respectively) of a 4N-1P-3K fertilizer were applied by fertigation for 5 years (1999–2003); a control treatment (unfertilized) was also established. Four years after the start of the experiment mean values of soil P and K concentrations were greater in the fertigation treatments than in the control. For K, concentrations increased with fertilizer dose. The profile of NO3-N, P and K concentrations within the irrigation wetted zone was studied in 2003; in the top soil layer, the concentrations of the three elements increased with fertilizer dose, generally showing linear responses to the different doses; in deeper soil layers, concentrations also increased with fertigation, but to a lesser extent; the concentrations of NO3-N, P and K recorded at 0.8–0.9 m depth in the soil of T600, together with observations of root distribution, were enough to suggest leaching losses and possible groundwater contamination. As a consequence of the higher soil nutrient availability, leaf N, P and K increased generally with dose. Leaf N deficiencies and low, but not deficient, leaf K levels were found in control trees in 2002 and 2003, as well as in T200 trees in 2003. Differences between treatments in shoot length, trunk circumference and canopy volume were not significant, for any studied year. Nevertheless, between February 1999 and November 2003 there was a significant increase in canopy volume with fertilizer dose. In 2003, fruit yield increased with fertilizer dose, as a consequence of an increase both in fruit number and weight. Cumulative yield for the experimental period also increased with fertilizer dose. These results are further evidence to confirm previous research made with the same experimental set-up: T400 for oil quality and T600 for table olive quality seem to be the most appropriate treatments, although there is a risk for leaching losses and the possibility of groundwater contamination with T600.  相似文献   

13.
In tropical rain forests, high canopy trees have diverse and abundant populations of ants and spiders. However, accessing high trees and their fauna remains difficult; thus, how ants and spiders interact in the canopy remains unclear. To better understand the interspecific interactions between these two dominant arthropod groups, we investigated their spatial distributions at the canopy surface in a tropical rain forest in Borneo. We sampled ants and spiders six times between 2009 and 2011 by sweeping with an insect net at the tree crown surfaces of 190 emergent or tall (≥20 m in height) trees. We collected 438 ant individuals belonging to 94 species and 1850 spider individuals (1630 juveniles and 220 adults) belonging to 142 morphospecies (adults only) from a total of 976 samples. The fact that we collected four times more spider individuals than ant individuals suggests that fewer ants forage at the tree crown surface than previously thought. The number of spider individuals negatively correlated with the number of ant individuals and the number of ant species, indicating significant exclusivity between ant and spider spatial distributions at the tree crown surface. Niche‐overlap between the two taxa confirmed this observation. Although our data do not address the causes of these spatial distributions, antagonistic interspecific interactions such as interference behaviors and intra‐guild predation are ecological mechanisms that give rise to exclusive spatial distributions.  相似文献   

14.
Extrafloral nectaries (EFNs) in many plant species produce sugary secretions that commonly attract ants. This research determined the impact of peach (Prunus persica L. Batsch) EFNs on the biological control of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), a key economic pest in peach orchards, and studied interactions of EFNs and ants. Studies (2002-2005) in peach orchards of the mid-Atlantic United States showed that 'Lovell' peach trees with EFNs supported more parasitic Hymenoptera in the spring and increased the parasitism of G. molesta larvae later in the season than those trees without EFNs. Ant exclusion experiments revealed that trees with EFNs harbored fewer G. molesta larvae when ants were permitted access to the tree canopies. Furthermore, the trees with EFNs had approximately 90% less fruit injury by G. molesta, indicating that EFNs have a protective role for the fruit as well. The results show that the combined actions of ants and parasitic Hymenoptera confer an EFN-mediated protective effect spanning the whole fruit growing season. When EFNs are present, naturally occurring biological control agents can reduce damage by G. molesta in peach orchards without insecticide inputs. The EFNs are an important host-plant characteristic that should be retained in future peach cultivar selections as a means of enhancing biological control.  相似文献   

15.
Ant-plant interactions in the canopy of a lowland Amazonian rainforest of the upper Orinoco, Venezuela, were studied using a modified commercial crane on rails (Surumoni project). Our observations show a strong correlation between plant sap exudates and both abundance of ants and co-occurrence of ant species in tree canopies. Two types of plant sap sources were compared: extrafloral nectaries (EFNs) and honeydew secretions by homopterans. EFNs were a frequent food source for ants on epiphytes (Philodendron spp., Araceae) and lianas (Dioclea, Fabaceae), but rare on canopy trees in the study area, whereas the majority of trees were host to aggregations of homopterans tended by honeydew-seeking ants (on 62% of the trees examined). These aggregations rarely occurred on epiphytes. Baited ant traps were installed on plants with EFNs and in the crowns of trees from three common genera, including trees with and without ant-tended homopterans: Goupia glabra (Celastraceae), Vochysia spp. (Vochysiaceae), and Xylopia spp. (Annonaceae). The number of ant workers per trap was significantly higher on plants offering one of the two plant sap sources than on trees without such resources. Extrafloral nectaries were used by a much broader spectrum of ant species and genera than honeydew, and co-occurrence of ant species (in traps) was significantly higher on plants bearing EFNs than on trees. Homopteran honeydew (Coccidae and Membracidae), on the other hand, was mostly monopolised by a single ant colony per tree. Homopteran-tending ants were generally among the most dominant ants in the canopy. The most prominent genera were Azteca, Dolichoderus (both Dolichoderinae), Cephalotes, Pheidole, Crematogaster (all Myrmicinae), and Ectatomma (Ponerinae). Potential preferences were recorded between ant and homopteran species, and also between ant-homopteran associations and tree genera. We hypothesize that the high availability of homopteran honeydew provides a key resource for ant mosaics, where dominant ant colonies and species maintain mutually exclusive territories on trees. In turn, we propose that for nourishment of numerous ants of lower competitive capacity, Philodendron and other sources of EFNs might be particularly important.  相似文献   

16.
Summary This study examines the role of canopy trees in the formation and maintenance of different herb microhabitats in a mixed mesophytic forest stand. Herb abundance and reproductive success were recorded in 54 circular plots under seven species of canopy trees and in 15 circular control plots>2 m from any tree. Soil moisture, soil nutrient levels, litter depth, and light intensity were measured in a subset of these plots. Ordination of plots by both herb relative abundance and by reproductive success of common species indicated that herb assemblages under most canopy tree species were similar to those away from trees. However, herb assemblages under Fagus grandifolia trees differed moderately from the others while plots under Quercus alba trees supported significantly different herb assemblages. Analyses of variance revealed that several herb species occurred at significantly closer mean distance to the base of Q. alba or Fagus trees or at higher densities under these tree species. Soils around Q. alba trees had significantly higher concentrations of calcium and sulfate ions, and higher pH than plots under other tree species and control plots. This correlated closely with Q. alba stemflow which had higher concentrations of calcium and sulfate ions and lower concentrations of hydrogen ions than stemflow from other trees at this site. The slightly lower soil pH near the base of Fagus trees may have been related to the high volumes of stemflow produced by this species. Stepwise regression showed significant correlations between abundances of five common herb species and soil nutrient patterns. Maintenance of spatial heterogeneity in forest floor resources by the presence of different species of canopy trees may therefore be important in the maintenance of diversity in these understory herb communities.  相似文献   

17.
When two tree species co-occur, decomposition and nitrogen (N) release from the foliage litter depend on two factors: the forest floor conditions under each canopy type and the species composition of the litter. We conducted an experiment using fir and oak to answer several questions regarding decomposition beneath canopies of the two species and the effects of litter species composition on decomposition. We compared the rates of decomposition and N release from three different litters (fir needle, oak leaf, and a mixture of the two) in 1-mm-mesh litterbags on the forest floor under three different canopies (a 40-year-old fir plantation, large oak trees, and mixed fir and oak trees) in Hokkaido, Japan, over a 2-year period. Beneath each of these canopy types, the litter decomposition rate and percentage of N remaining in the litterbags containing a mixture of fir and oak litter were not significantly different from the expected values calculated for litterbags containing litter from a single tree species. Oak leaf litter decomposed significantly faster than fir needle litter beneath each canopy type. The litter decomposition rate was significantly higher beneath the fir canopy than under the oak canopy, and was intermediate under the mixed canopy of fir and oak. No net N release, that is, a decrease in the total N compared to the original amount, was detected from fir litter under each canopy type or from oak leaf litter beneath the oak canopy. N increased over the original amount in the fir litter beneath the oak canopy and the mixed canopy of fir and oak, but N was released from the oak litter under the fir canopy and the mixed canopy of fir and oak. These results suggest that oak leaf litter blown onto fir forest floor enhances nutrient cycling, and this might be a positive effect of a mixed stand of conifer and broad-leaved trees.  相似文献   

18.
This study analyzed the effects of tree size, and correlated architectural tree characteristics, on the assemblages of ants and insect herbivores associated with Anadenanthera macrocarpa (Mimosaceae). The latter is a myrmecophilous tree species from the Atlantic rainforest in south-eastern Brazil. Ants and insect herbivores were collected in 30 individuals of A. macrocarpa , ranging from young individuals (>3 m in height) to emergent trees (up to 40 m). Tree height was a strong indicator of other tree characteristics, including trunk diameter, crown height, crown volume, and number of bifurcations. Ants were collected using arboreal pitfall traps and beating, while insect herbivores with beating only. There was a significant increase in both abundance and species richness of ants and insect herbivores with an increase in tree height. In addition, tree height had a significant effect on the species composition of ants and insect herbivores. Assemblages of both taxa showed a nested organization pattern. The species found in small- and medium-sized trees, in general, consisted of a subset of the species found in the crowns and branches of larger, canopy or emergent trees. Thus, in A. macrocarpa , there was not a replacement of insect species with plant ontogeny. This finding is at variance with those conducted in tropical evergreen forests and which show a clear stratification between the understory and canopy insect faunas. Additional studies are needed to explain these contrasting patterns, but it is possible that differences in microclimate are involved. As the forest we studied is semi-deciduous, microclimatic gradients between the understory and the canopy habitat are probably less severe than in an evergreen forest, thus resulting in a lower turnover of species.  相似文献   

19.
Animals may disperse cultivated trees outside the agricultural land, favoring the naturalization or, even, the invasiveness of domestic plants. However, the ecological and conservation implications of new or unexplored mutualisms between cultivated trees and wild animals are still far from clear. Here, we examine the possible role of an expanding and, locally, overabundant pigeon species (Columba palumbus) as an effective disperser of domestic olive trees (Olea europaea), a widespread cultivated tree, considered a naturalized and invasive species in many areas of the world. By analyzing crop and gizzard content we found that olive fruits were an important food item for pigeons in late winter and spring. A proportion of 40.3% pigeons consumed olive seeds, with an average consumption of 7.8 seeds per pigeon and day. Additionally, most seed sizes (up to 0.7 g) passed undamaged through the gut and were dispersed from cultivated olive orchards to areas covered by protected Mediterranean vegetation, recording minimal dispersal distances of 1.8–7.4 km. Greenhouse experiments showed that seeds dispersed by pigeons significantly favored the germination and establishment in comparison to non-ingested seeds. The ability of pigeons to effectively disperse domestic olive seeds may facilitate the introduction of cultivated olive trees into natural systems, including highly-protected wild olive woodlands. We recommend harvesting ornamental olive trees to reduce both pigeon overpopulation and the spread of artificially selected trees into the natural environment.  相似文献   

20.
Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest–woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest–woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号