首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The inhibitory effect of anthocyanins has been investigated in the peroxidation of linoleic acid in micelles in the presence and in the absence of (+)-catechin. The peroxidation was initiated by thermal decomposition of 2,2(')-azobis[2-(2-imidazolin-2-yl)propane], and the kinetics of peroxidation were followed by measuring the rate of oxygen consumption and the rate of disappearance of the antioxidant. The analysis of the antioxidant effect of various anthocyanins, alone or in the presence of catechin, demonstrates that catechin, which is relatively inefficient at inhibiting linoleic acid oxidation, regenerates the highly efficient antioxidant malvidin 3-glucoside and, at a lower extent, peonidin 3-glucoside. The malvidin 3-glucoside recycling by catechin strongly increases the antioxidant efficiency of these two antioxidants. This protective mechanism appears specific for malvidin and peonidin 3-glucosides. The high unpaired spin density of the phenolic O atoms in the radicals generated by these anthocyanins, calculated by the semiempirical quantum chemical AM1 method, may explain the observed behavior.  相似文献   

2.
脂质过氧化对人红细胞膜脂流动性的影响   总被引:20,自引:3,他引:17  
研究枯稀过氧化氢/高铁血红素体系所产生的烷基过氧自由基对红细胞的损伤。测定了脂质过氧化的产物——丙二脂的生成,并证明阿魏酸钠对脂质过氧化的抑制。荧光偏振的结果指出,膜脂过氧化以后降低了膜脂的流动性。人红细胞用5DSA和16DSA标记并用ESR检测膜脂流动性,结果表明,序参数S几乎没有发生变化,旋转相关时间τ值的增加证明膜脂过氧化以后,疏水尾部的物理状态发生了改变。经脂质过氧化以后,红细胞膜中的不饱和脂防酸的减少,可能是降低膜脂流动性的原因之一。  相似文献   

3.
The one-electron oxidation of (bi)sulfite is catalyzed by peroxidases to yield the sulfur trioxide radical anion (SO3-), a predominantly sulfur-centered radical as shown by studies with 33S-labeled (bi)sulfite. This radical reacts with molecular oxygen to form a peroxyl radical. The subsequent reaction of this peroxyl radical with (bi)sulfite has been proposed to form the sulfate anion radical, which is nearly as strong an oxidant as the hydroxyl radical. We used the spin trapping electron spin resonance technique to provide for the first time direct evidence for sulfate anion radical formation during (bi)sulfite peroxidation. The sulfate anion radical is known to react with many compounds more commonly thought of as hydroxyl radical scavengers such as formate and ethanol. Free radicals derived from these scavengers are trapped in systems where (bi)sulfite peroxidation has been inhibited by these scavengers.  相似文献   

4.
The effect of free fatty acids on the process of hemoglobin conversion and lipid peroxidation has been studied in model systems and erythrocytes. It has been found that methemoglobin and oxyhemoglobin are converted to the low spin oxidized form, namely, reversible hemichrome under the action of fatty acids. In the case of oxyhemoglobin, an increase in the level of active oxygen forms is observed in the system which initiates the formation of primary and secondary lipid peroxidation products. Incubation of erythrocytes with free fatty acids causes the formation of Heinz bodies and is accompanied by an increase of the lipid peroxidation level.  相似文献   

5.
Free radical spin traps such as phenyl tert-butylnitrone (PBN) are often reported to provide protection of the central nervous system of animal models against free radical damage, and the effects are attributed to its "antioxidant activity." The effects of PBN and p-CH(3)O-PBN were compared with known antioxidants, alpha-tocopherol and 2,2,5,7,8-pentamethyl-6-hydroxychroman (PMHC), in quantitative kinetic studies of lipid peroxidation thermally initiated under controlled conditions. Results obtained on the spin traps in organic solvents and in dilinoleoyl phosphatidylcholine (DLPC) bilayers indicated that the spin traps do not act as peroxyl radical trapping antioxidants but rather act only as moderate "retarders" of oxygen uptake at relatively high concentration. At low oxygen partial pressures, e.g., 14 torr, which better reflect oxygen partial pressures in biological systems, PBN provides a more significant reduction in oxygen uptake (up to 50%) by DLPC bilayers but still did not act as a typical antioxidant. However, at low partial pressures, PBN does act cooperatively with PMHC. It is suggested that its role in biological fluids and tissues may be to extend the suppressed oxidation by natural antioxidants expected to be present. The combination of antioxidant/spin trap, alpha-(3, 5-di-tert-butyl-4-hydroxyphenyl)-N-tert-butylnitrone did not exhibit any enhanced antioxidant efficiency compared with the related hindered phenol, 2,6-di-tert-butyl-4-methoxyphenol.  相似文献   

6.
A quantitative method of the oxygen consumption rate measurement by human blood neutrophils upon their activation is described. This method is based on the spin exchange determination between 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrroline-1-yloxyl spin probe and oxygen molecules from the ESR spectra. Method allows the determination of about 1 micromolar concentrations of oxygen.  相似文献   

7.
Although the physiological role of uncoupling proteins (UCPs) 2 and 3 is uncertain, their activation by superoxide and by lipid peroxidation products suggest that UCPs are central to the mitochondrial response to reactive oxygen species. We examined whether superoxide and lipid peroxidation products such as 4-hydroxy-2-trans-nonenal act independently to activate UCPs, or if they share a common pathway, perhaps by superoxide exposure leading to the formation of lipid peroxidation products. This possibility can be tested by blocking the putative reactive oxygen species cascade with selective antioxidants and then reactivating UCPs with distal cascade components. We synthesized a mitochondria-targeted derivative of the spin trap alpha-phenyl-N-tert-butylnitrone, which reacts rapidly with carbon-centered radicals but is unreactive with superoxide and lipid peroxidation products. [4-[4-[[(1,1-Dimethylethyl)-oxidoimino]methyl]phenoxy]butyl]triphenylphosphonium bromide (MitoPBN) prevented the activation of UCPs by superoxide but did not block activation by hydroxynonenal. This was not due to MitoPBN reacting with superoxide or the hydroxyl radical or by acting as a chain-breaking antioxidant. MitoPBN did react with carbon-centered radicals and also prevented lipid peroxidation by the carbon-centered radical generator 2,2'-azobis(2-methyl propionamidine) dihydrochloride (AAPH). Furthermore, AAPH activated UCPs, and this was blocked by MitoPBN. These data suggest that superoxide and lipid peroxidation products share a common pathway for the activation of UCPs. Superoxide releases iron from iron-sulfur center proteins, which then generates carbon-centered radicals that initiate lipid peroxidation, yielding breakdown products that activate UCPs.  相似文献   

8.
Oxygen radicals have been implicated as important mediators of myocardial ischemic and reperfusion injury. A major product of oxygen radical formation is the highly reactive hydroxyl radical via a biological Fenton reaction. The sarcoplasmic reticulum is one of the major target organelles injured by this process. Using a oxygen radical generating system consisting of dihydroxyfumarate and Fe3+-ADP, we studied lipid peroxidation and Ca2+-ATPase of cardiac sarcoplasmic reticulum. Incubation of sarcoplasmic reticulum with dihydroxyfumarate plus Fe3+-ADP significantly inhibited enzyme activity. Addition of superoxide dismutase, superoxide dismutase plus catalase (15 micrograms/ml) or iron chelator, deferoxamine (1.25-1000 microM) protected Ca2+-ATPase activity. Time course studies showed that this system inhibited enzyme activity in 7.5 to 10 min. Similar exposure of sarcoplasmic reticulum to dihydroxyfumarate plus Fe3+-ADP stimulated malondialdehyde formation. This effect was inhibited by superoxide dismutase, catalase, singlet oxygen, and hydroxyl radical scavengers. EPR spin-trapping with 5,5-dimethyl-1-pyrroline-N-oxide verified production of the hydroxyl radical. The combination of dihydroxyfumarate and Fe3+-ADP resulted in a spectrum of hydroxyl radical spin trap adduct, which was abolished by ethanol, catalase, mannitol, and superoxide dismutase. The results demonstrate the role of oxygen radicals in causing inactivation of Ca2+-ATPase and inhibition of lipid peroxidation of the sarcoplasmic reticulum which could possibly be one of the important mechanisms of oxygen radical-mediated myocardial injury.  相似文献   

9.
应用自旋捕集方法和化学发光方法研究天然抗氧化剂丹参酮(Tanshinone)对心肌肌质网膜脂质过氧化过程中产生的脂类自由基的清除作用。发现在一定的浓度范围内,丹参酮对脂质过氧化有较好的保护作用,在丹参酮浓度大于1mg/mg蛋白时,对脂类自由基清除率可达60%。丹参酮对肌质网膜脂质过氧化的保护机理可能是通过清除脂类自由基而阻断脂质过氧化的链式反应,而不是清除氧自由基而防止脂质过氧化的启动。  相似文献   

10.
The healthy intact polymorphonuclear leukocytes (PMNs) were labeled with 4-maleimide-TEMPO spin labeling compound (MAL) to study the effects of oxygen radicals produced by phorbol myristate acetate (PMA)-stimulated PMNs on the conformation of sulfhydryl (SH) groups of PMN membrane proteins. The lipid peroxidation induced by PMA-stimulated PMNs was detected by evaluating the formation of malonaldehyde (MDA) with the thiobarbituric acid (TBA) test. From the experiments of luminol-dependent chemiluminescence (CL) and fluorometry, it was found that Chinese herbs schizandrin B (Sin B) and quercetin (Q) possessed scavenging properties for oxygen radicals produced during the PMN respiratory burst. These two herbs can also inhibit the conformation changes in SH binding sites on the PMN membrane proteins caused by oxygen radicals produced by the PMNs themselves. They also decreased the amount of MDA, which was a final product formed during lipid peroxidation.  相似文献   

11.
It is known that nonheme iron accumulates and free radicals are generated in skin exposed to ultraviolet (UV) light. Iron ions have a role in skin photodamage by participating in the formation of reactive oxygen species. In this study, we evaluated the effect of egg yolk phosvitin on UV-light-induced oxidative stress. Mouse dorsal skin homogenate was exposed to UVA light in the presence or absence of ferric nitrilotriacetate, (FeNTA). Lipid peroxidation was determined by measuring thiobarbituric acid-reactive substances (TBARS). The TBARS concentration increased with increasing FeNTA concentration and UV-light-exposure time. In the presence of FeNTA, phosvitin more effectively inhibited in vitro lipid peroxidation than did bovine serum albumin. According to results of electron spin resonance studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trapping agent, phosvitin suppressed the formation of hydroxyl radicals. These results suggest that UV-light-induced oxidative stress can be reduced by phosvitin.  相似文献   

12.
The aim of this study was to determine whether alpha-tocopherol and zeaxanthin offer synergistic protection against photosensitized lipid peroxidation mediated by singlet oxygen and free radicals. The antioxidant action of zeaxanthin and alpha-tocopherol was studied in liposomes made of phosphatidylcholine and cholesterol. Progress of lipid peroxidation, induced by aerobic photoexcitation of rose bengal, was monitored by the detection of lipid hydroperoxides and by electron spin resonance oximetry. In addition, cholesterol was employed as a mechanistic reporter molecule, which forms characteristic products of the interaction with singlet oxygen or free radicals. Cholesterol hydroperoxides were quantitatively determined by HPLC/electrochemical detection. HPLC/ultraviolet-visible (UV-VIS) absorption detection was used to measure concentrations of zeaxanthin and alpha-tocopherol. Zeaxanthin, even at concentrations of 2.5 microM, effectively protected against singlet oxygen-mediated lipid peroxidation but was rapidly consumed due to interaction with free radicals. alpha-Tocopherol alone was not effective in protecting against lipid peroxidation, even at concentration of 0.1 mM. Combinations of zeaxanthin and alpha-tocopherol exerted a synergistic protection against lipid peroxidation. The synergistic effect may be explained in terms of prevention of carotenoid consumption by effective scavenging of free radicals by alpha-tocopherol therefore allowing zeaxanthing to quench the primary oxidant-singlet oxygen effectively.  相似文献   

13.
Electron spin resonance spin-trapping techniques were used to investigate the in vitro and in vivo formation of free radicals during 3-methylindole (3MI) metabolism by goat lung. Utilizing the spin trap phenyl-t-butylnitrone, a nitrogen-centered free radical was detected 3 min after the addition of 3MI to an in vitro incubation system containing goat lung microsomes in the presence of NADPH and O2. The spectrum of the spin adduct was identical to that observed when 3MI was irradiated with ultraviolet light. A carbon-centered radical was also observed which increased in concentration with increasing incubation time. Microsomal incubations containing ferrous sulfate in the absence of 3MI to initiate lipid peroxidation produced the same carbon-centered free radical as obtained by spin-trapping. Malondialdehyde, and end product of lipid peroxidation, was also found to increase in concentration with increasing incubation time of 3MI. The concept that 3MI causes lipid peroxidation in the lung was supported by the in vivo study in which a carbon-centered radical was spin-trapped by phenyl-t-butylnitrone in lungs of intact goats infused with 3MI. This carbon-centered radical had hyperfine splitting constants identical to those carbon-centered free radicals trapped in in vitro incubations of 3MI. These data demonstrate that microsomal metabolism of 3MI produces a nitrogen-centered radical from 3MI which initiates lipid peroxidation in vitro and in vivo causing the formation of carbon-centered radicals from microsomal membranes.  相似文献   

14.
Using spin trapping method there were discovered and identified the radicals of linolenic acid formed when initiating its peroxidation by the system Fe2+-ascorbate. Mechanism of formation of linolenic acid radicals and their role in initiation of peroxidation were studied. A scheme of reactions of peroxidation initiation in the system Fe2+-ascorbate. linolenic acid is proposed.  相似文献   

15.
Polyunsaturated fatty acids such as arachidonic acid were previously shown to be toxic to HepG2 cells expressing CYP2E1 by a mechanism involving oxidative stress and lipid peroxidation. This study investigated the effects of the spin trapping agents Tempol and POBN on the arachidonic acid toxicity. Arachidonic acid caused toxicity and induced lipid peroxidation and mitochondrial membrane damage in cells overexpressing CYP2E1 but had little or no effect in control cells not expressing CYP2E1. The toxicity appeared to be both apoptotic and necrotic in nature. 4-Hydroxy-[2,2,6,6-tetramethylpiperidine-1-oxyl] (Tempol) and alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (POBN) protected against the decrease in cell viability and the apoptosis and necrosis. These spin traps prevented the enhanced lipid peroxidation and the loss of mitochondrial membrane potential. Tempol and POBN had little or no effect on cellular viability or on CYP2E1 activity at concentrations which were protective. It is proposed that elevated production of reactive oxygen intermediates by cells expressing CYP2E1 can cause lipid peroxidation, which subsequently damages the mitochondrial membrane leading to a loss in cell viability when the cells are enriched with arachidonic acid. Tempol and POBN, which scavenge various radical intermediates, prevent in this way the enhanced lipid peroxidation, mitochondrial dysfunction, and the cell toxicity. Since oxidative stress appears to play a key role in ethanol hepatotoxicity, it may be of interest to evaluate whether such spin trapping agents are useful candidates for the prevention or improvement of ethanol-induced liver injury.  相似文献   

16.
Sun S  Bao Z  Ma H  Zhang D  Zheng X 《Biochemistry》2007,46(22):6668-6673
Generation of singlet oxygen is first investigated in the decomposition of polyunsaturated lipid peroxide, alpha-linolenic acid hydroperoxide (LAOOH), by heme-proteins such as cytochrome c and lactoperoxidase. Chemiluminescence and electron spin resonance methods are used to confirm the singlet oxygen generation and quantify its yield. Decomposition products of LAOOH are characterized by HPLC-ESI-MS, which suggests that singlet oxygen is produced via the decomposition of a linear tetraoxide intermediate (Russell's mechanism). Free radicals formed in the decomposition are also identified by the electron spin resonance technique, and the results show that peroxyl, alkyl, and epoxyalkyl radicals are involved. The changes of cytochrome c and lactoperoxidase in the reaction are monitored by UV-visible spectroscopy, revealing the action of a monoelectronic and two-electronic oxidation for cytochrome c and lactoperoxidase, respectively. These results suggest that cytochrome c causes a homolytic reaction of LAOOH, generating alkoxyl radical and then peroxyl radical, which in turn releases singlet oxygen following the Russell mechanism, whereas lactoperoxidase leads to a heterolytic reaction of LAOOH, and the resulting ferryl porphyryl radical of lactoperoxidase abstracts the hydrogen atom from LAOOH to give peroxyl radical and then singlet oxygen. This observation would be important for a better understanding of the damage mechanism of cell membrane or lipoprotein by singlet oxygen and various radicals generated in the peroxidation and decomposition of lipids induced by heme-proteins.  相似文献   

17.
The ability of bis(cyclopentadienyl)-vanadium(IV) (acetylacetonate) (1) to initiate oxygen-dependent lipid peroxidation in zwitterionic liposomal membranes was examined in detail. A comparison of the rates of the lipid peroxidation reaction demonstrated that the electron-donating capacity of the substituted acetylacetonate ligand significantly influences the rate of reaction. An increase in the rate of lipid peroxidation correlated to a decrease in the V(IV)/V(V) redox potential. Notably, lipid peroxidation initiated with 1 proceeded without the formation of radicals as shown by EPR spin trap techniques. In contrast, lipid peroxidation initiated with non-chelated bis(cyclopentadienyl)-vanadium(IV) dichloride (6) was associated with the production of radicals under similar experimental conditions. There also was a significant pH effect on the extent of peroxidation initiated with 6 versus the reaction initiated with 1. The mode of action of 1 likely involves the activation of molecular oxygen by the vanadium(IV) center followed by allylic hydrogen atom abstraction from the lipid.  相似文献   

18.
《Free radical research》2013,47(1-5):251-255
Isolated rat hepatocytes incubated with iron salts in the presence of the spin trapping agent tx-4-pyridyl-l-oxide N-tert-butyl nitrone (4-POBN) generate a clear electron spin resonance signal; this signal is not detectable in the absence of exogenous iron. The hyperfine splitting constants are identical whether ferrous or ferric iron is used. The free radical trapped does not appear to be an active oxygen species but rather a carbon-centred radical, which we here ascribe to a lipodienyl radical on the basis of its hyperfine splitting features. Support to this interpretation is lent by the fact that no such radical could be generated in hepatocytes fully protected against lipid peroxidation by pretreating the donor rats with α-tocopherol.  相似文献   

19.
The effect of enzymatic lipid peroxidation on the molecular order of microsomal membranes was evaluated by ESR spectroscopy using the spin probes 5-, 12-, and 16-doxyl-stearic acid. Rat liver microsomal membranes were peroxidized by the NADPH-dependent reaction in the presence of the chelate ADP-Fe3+. Peroxidation resulted in a preferential depletion of polyenoic fatty acids and an increase in the percentage composition of shorter fatty acyl chains. There was no change in the cholesterol/phospholipid ratio of the peroxidized microsomes. The molecular order of both control and peroxidized membranes decreased toward the central region of the bilayer, and the order parameter (S) of each probe was temperature dependent. Peroxidation of the microsomal membrane lipids resulted in an increase in the order parameter determined with the three stearic acid spin probes. Of the three probes, 12-doxylstearic acid was the most sensitive to the changes in membrane organization caused by peroxidation. These data indicate that ESR spectroscopy is a sensitive method of detecting changes in membrane order accompanying peroxidation of membrane lipids.  相似文献   

20.
Antiarrhythmic drugs, e.g. lidocaine, quinidine, and procainamide have been suggested as a means of reducing myocardial damage. The mode of action of these drugs have been attributed to their "membrane-stabilizing" properties. However, as tissue ischemia reperfusion is reported to generate toxic species of oxygen, we investigated the oxygen radical scavenging properties of these drugs and their effect on NADPH-dependent lipid peroxidation. These antiarrhythmic drugs are found to be ineffective as superoxide radical scavengers but are potent scavengers of hydroxyl radical with rate constants of 1.8 x 10(10) M-1 s-1, 1.61 x 10(10) M-1 s-1, and 1.45 x 10(10) M-1 s-1 for quinidine, lidocaine and procainamide, respectively, as determined by deoxyribose assay. In EPR study, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap, lidocaine, quinidine, and procainamide caused a dose-dependent inhibition of DMPO-OH adduct formation. These drugs also caused a dose-dependent inhibition of NADPH-dependent lipid peroxidation when lung microsomes were incubated with NADPH in presence of Fe(3+)-ADP. We propose that the antiarrhythmic agents exert their beneficial effects, in part, by their ability to scavenge toxic species of oxygen and by reducing membrane lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号