首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Force generation in striated muscle is coupled with inorganic phosphate (Pi) release from myosin, because force falls with increasing Pi concentration ([Pi]). However, it is unclear which steps in the cross-bridge cycle limit loaded shortening and power output. We examined the role of Pi in determining force, unloaded and loaded shortening, power output, and rate of force development in rat skinned cardiac myocytes to discern which step in the cross-bridge cycle limits loaded shortening. Myocytes (n = 6) were attached between a force transducer and position motor, and contractile properties were measured over a range of loads during maximal Ca2+ activation. Addition of 5 mM Pi had no effect on maximal unloaded shortening velocity (Vo) (control 1.83 ± 0.75, 5 mM added Pi 1.75 ± 0.58 muscle lengths/s; n = 6). Conversely, addition of 2.5, 5, and 10 mM Pi progressively decreased force but resulted in faster loaded shortening and greater power output (when normalized for the decrease in force) at all loads greater than 10% isometric force. Peak normalized power output increased 16% with 2.5 mM added Pi and further increased to a plateau of 35% with 5 and 10 mM added Pi. Interestingly, the rate constant of force redevelopment (ktr) progressively increased from 0 to 10 mM added Pi, with ktr 360% greater at 10 mM than at 0 mM added Pi. Overall, these results suggest that the Pi release step in the cross-bridge cycle is rate limiting for determining shortening velocity and power output at intermediate and high relative loads in cardiac myocytes. muscle mechanics; force-velocity relationship; cross-bridge cycle  相似文献   

2.
G protein-coupled receptors (GPCRs) control neuronal functions via ion channel modulation. For voltage-gated ion channels, gating charge movement precedes and underlies channel opening. Therefore, we sought to investigate the effects of G protein activation on gating charge movement. Nonlinear capacitive currents were recorded using the whole cell patch-clamp technique in cultured rat sympathetic neurons. Our results show that gating charge movement depends on voltage with average Boltzmann parameters: maximum charge per unit of linear capacitance (Qmax) = 6.1 ± 0.6 nC/µF, midpoint (Vh) = –29.2 ± 0.5 mV, and measure of steepness (k) = 8.4 ± 0.4 mV. Intracellular dialysis with GTPS produces a nonreversible 34% decrease in Qmax, a 10 mV shift in Vh, and a 63% increase in k with respect to the control. Norepinephrine induces a 7 mV shift in Vh and 40% increase in k. Overexpression of G protein 14 subunits produces a 13% decrease in Qmax, a 9 mV shift in Vh, and a 28% increase in k. We correlate charge movement modulation with the modulated behavior of voltage-gated channels. Concurrently, G protein activation by transmitters and GTPS also inhibit both Na+ and N-type Ca2+ channels. These results reveal an inhibition of gating charge movement by G protein activation that parallels the inhibition of both Na+ and N-type Ca2+ currents. We propose that gating charge movement decrement may precede or accompany some forms of GPCR-mediated channel current inhibition or downregulation. This may be a common step in the GPCR-mediated inhibition of distinct populations of voltage-gated ion channels. ion channel modulation; G protein-coupled receptors; charge movement  相似文献   

3.
The two parameters of the hyperbolic tangent equation, Pm and, were estimated from in situ vertical profiles of primary productionusing mesocosm data along a nutrient gradient. The parameters,derived from 4-h (around noon) 14C incubations, were used togetherwith the photosynthesis-light curve and hourly solar radiationdata to calculate daily primary production rates (Pd). Approximately40% of the daily production occurred in the 4 h around noon.Considering parameter uncertainty, there was no indication ofan increase in variation in production with increased nutrientloading, nor did biomass-specific P-I parameters increase. Annualproduction ranged from 82 to 901 g C m–2 year–1and was highest in the highest nutrient treatment tank. Dailyproductivity ranged from 0.02 to 9.1 g C m–2 day–1and was significantly correlated, in all treatments, with acomposite parameter BI0/k (where B is phytoplankton biomass;I0 is daily radiation and k is the extinction coefficient).Linear regressions of Pd against BI0/k indicated that much ofthe variability (86%) in productivity was explained by lightavailability and phytoplankton biomass. Two approaches for predictingproductivity were compared: (i) predicting production directlyfrom environmental variables (i.e. BI0/k) and (ii) predictingthe parameters of the P-I curve from environmental variablesand using these to calculate daily production.  相似文献   

4.
When airways constrict, the surrounding parenchyma undergoesstretch and distortion. Because of the mechanical interdependence between airways and parenchyma, the material properties of the parenchyma are important factors that modulate the degree ofbronchoconstriction. The purpose of this study was to investigate theeffect of changes in transpulmonary pressure (Ptp) and inducedconstriction on parenchymal bulk (k)and shear (µ) moduli. In excised rat lungs, pressure was measured atthe airway opening, and pressure-volume curves were obtained byimposing step decreases in volume with a calibrated syringe from totallung inflation. Calculation was made ofk during small-volume oscillations (1 Hz). Absolute lung volume at 0 cmH2O Ptp was obtained bysaline displacement. To calculate µ, a lung-indentation test wasperformed. The lung surface was deformed with a cylindrical punch(diameter = 0.45 cm) in 0.25-mm increments, and the force required toeffect this displacement was measured by a weight balance. Measurementsof k and µ were obtained at 4 and 10 cmH2O Ptp, and again at 4 cmH2O Ptp, after delivery ofmethacholine aerosol (100 mg/ml) into the trachea. Values ofk and µ in rat lungs were similar tothose reported in other species. In addition, k and µ were dependent on Ptp. Afterinduced constriction, k and µ increased significantly. That k and µ can increase after induced constriction has important implicationsvis a vis the factors modulating airway narrowing.

  相似文献   

5.
Kir1.1 (ROMK1) is inhibited by hypercapnia andintracellular acidosis with midpoint pH for channel inhibition(pKa) of ~6.7. Another close relative,Kir4.1 (BIR10), is also pH sensitive with much lower pH sensitivity(pKa ~6.0), although it shares a high sequencehomology with Kir1.1. To find the molecular determinants for thedistinct pH sensitivity, we studied the structure-functional relationship using site-directed mutagenesis. AnNH2-terminal residue (Lys-53) was found to be responsiblefor the low pH sensitivity in Kir4.1. Mutation of this lysine to valine(K53V), a residue seen at the same position in Kir1.1, markedlyincreased channel sensitivity to CO2/pH. Reverse mutationon Kir1.1 (V66K) decreased the CO2/pH sensitivities.Interestingly, mutation of these residues to glutamate greatly enhancedthe pH sensitivity in both channels. Other contributors to the distinctpH sensitivity were histidine residues in the COOH terminus, whosenumbers are fewer in Kir4.1 than Kir1.1. Mutation of two of thesehistidine residues in Kir1.1 (H342Q/H354N) reduced CO2/pHsensitivities, whereas the creation of two histidines (S328H/G340H) inKir4.1 increased the CO2/pH sensitivities. Combinedmutations of the lysine and histidine residues in Kir4.1(K53V/S328H/G340H) gave rise to a channel that had CO2/pHsensitivities almost identical to those of the wild-type Kir1.1. Thusthe residues demonstrated in our current studies are likely themolecular basis for the distinct pH sensitivity between Kir1.1 andKir4.1.

  相似文献   

6.
7.
Postnatal transitions in myosin heavy chain (MHC) isoformexpression were found to be associated with changes in both isometric and isotonic contractile properties of rat diaphragm muscle(Diam). Expression of MHCneo predominated inneonatal Diam fibers but was usually coexpressed withMHCslow or MHC2A isoforms. Expression ofMHCneo disappeared by day 28. Expression ofMHC2X and MHC2B emerged at day 14 andincreased thereafter. Associated with these MHC transitions in theDiam, maximum isometric tetanic force (Po), maximum shortening velocity, and maximum power output progressively increased during early postnatal development. Maximum power output ofthe Diam occurred at ~40% Po at days0 and 7 and at ~30% Po in older animals.Susceptibility to isometric and isotonic fatigue, defined as a declinein force and power output during repetitive activation, respectively,increased with maturation. Isotonic endurance time, defined as the timefor maximum power output to decline to zero, progressively decreasedwith maturation. In contrast, isometric endurance time, defined as thetime for force to decline to 30-40% Po, remained>300 s until after day 28. We speculate that with thepostnatal transition to MHC2X and MHC2Bexpression energy requirements for contraction increase, especiallyduring isotonic shortening, leading to a greater imbalance betweenenergy supply and demand.

  相似文献   

8.
Interaction of leg stiffness and surface stiffness during human hopping   总被引:3,自引:0,他引:3  
Ferris, Daniel P., and Claire T. Farley. Interaction ofleg stiffness and surface stiffness during human hopping.J. Appl.Physiol. 82(1): 15-22, 1997.When mammals run,the overall musculoskeletal system behaves as a single linear "legspring." We used force platform and kinematic measurements todetermine whether leg spring stiffness(kleg) isadjusted to accommodate changes in surface stiffness(ksurf) whenhumans hop in place, a good experimental model for examiningadjustments tokleg in bouncinggaits. We found thatkleg was greatlyincreased to accommodate surfaces of lower stiffnesses. The seriescombination ofkleg andksurf[total stiffness(ktot)]was independent ofksurf at a givenhopping frequency. For example, when humans hopped at a frequency of 2 Hz, they tripled theirkleg on the leaststiff surface(ksurf = 26.1 kN/m; kleg = 53.3 kN/m) compared with the most stiff surface(ksurf = 35,000 kN/m; kleg = 17.8 kN/m). Values forktot were notsignificantly different on the least stiff surface (16.7 kN/m) and themost stiff surface (17.8 kN/m). Because of thekleg adjustment,many aspects of the hopping mechanics (e.g., ground-contact time andcenter of mass vertical displacement) remained remarkably similardespite a >1,000-fold change inksurf. This studyprovides insight into howkleg adjustmentscan allow similar locomotion mechanics on the variety of terrainsencountered by runners in the natural world.

  相似文献   

9.
Hunter, Kam D., and John A. Faulkner. Pliometriccontraction-induced injury of mouse skeletal muscle: effect of initial length. J. Appl. Physiol. 82(1):278-283, 1997.For single pliometric (lengthening) contractionsinitiated from optimal fiber length (Lf), the mostimportant factor determining the subsequent force deficit is the workinput during the stretch. We tested the hypothesis that regardless ofthe initial length, the force deficit is primarily a function of thework input. Extensor digitorum longus muscles of mice were maximallyactivated in situ and lengthened at 2 Lf /s from oneof three initial fiber lengths (90, 100, or 120% of Lf) to one ofthree final fiber lengths (150, 160, or 170% of Lf). Maximalisometric force production was assessed before and after the pliometriccontraction. No single mechanical factor, including thework input(r2 = 0.34), was sufficient to explain the differences in force deficits observed among groups. Therefore, the force deficit appears to arisefrom a complex interaction of mechanicalevents. With the data grouped by initial fiber length,the correlation between the average work and the average force deficitwas high(r2 = 0.97-0.99). Consequently, differences in force deficits among groups were best explained on the basis of the initial fiber length andthe work input during the stretch.

  相似文献   

10.
We investigated the effect of a singlerapid stretch on poststretch force and myosin phosphorylation in bovinetracheal smooth muscle. When unstimulated muscle strips were stretchedfrom suboptimal length to optimal length (Lo),poststretch steady-state force was not significantly different fromthat of unstretched control at Lo. However, whencarbachol-activated muscle strips were stretched from suboptimal lengthto Lo, poststretch force and myosin phosphorylation were lower than control and significantly correlated with initial length. When poststretch muscle strips were allowed to relax for 1 hand then activated by K+ depolarization, the developedforce remained significantly correlated with initial length. When thesame strain was applied in 23 increments to minimize peak stress,poststretch force and myosin phosphorylation increased significantly,approaching the levels expected at Lo. Furthermore,poststretch force development increased after each cycle of contractionand relaxation, approaching the control level after four cycles. Theseresults suggest that activated airway smooth muscle cells can retainrelatively precise memory of past strain when they are stretchedrapidly with high stress.

  相似文献   

11.
A model for phosphocreatine resynthesis   总被引:1,自引:0,他引:1  
Nevill, Alan M., David A. Jones, David McIntyre, Gregory C. Bogdanis, and Mary E. Nevill. A model forphosphocreatine resynthesis. J. Appl.Physiol. 82(1): 329-335, 1997.A model for phosphocreatine (PCr) resynthesis is proposed based on a simple electric circuit, where the PCr store in muscle is likened to thestored charge on the capacitor. The solution to the second-order differential equation that describes the potential around the circuitsuggests the model for PCr resynthesis is given byPCr(t) = R  [d1 · exp(k1 · t) ± d2 · exp(k2 · t)],where R is PCr concentration at rest,d1,d2, k1, andk2 are constants, andt is time. By using nonlinear leastsquares regression, this double-exponential model was shown to fit thePCr recovery data taken from two studies involving maximal exerciseaccurately. In study 1, when themuscle was electrically stimulated while occluded, PCr concentrations rose during the recovery phase to a level above that observed at rest.In study 2, after intensive dynamicexercise, PCr recovered monotonically to resting concentrations. Thesecond exponential term in the double-exponential model was found tomake a significant additional contribution to the quality of fit inboth study 1 (P < 0.05) andstudy 2 (P < 0.01).

  相似文献   

12.
The female sexhormone 17-estradiol (E2) has been shown to increaselipid and decrease carbohydrate utilization in animals. Weadministrated oral E2 and placebo (randomized, doubleblind, crossover) to eight human male subjects for 8 days (~3 mg/day) and measured respiratory variables, plasma substrates, hormones (E2, testosterone, leptin, cortisol, insulin, andcatecholamines), and substrate utilization during 90 min of enduranceexercise. [6,6-2H]glucose and[1,1,2,3,3-2H]glycerol tracers were used to calculatesubstrate flux. E2 administration increased serumE2 (0.22 to 2.44 nmol/l, P < 0.05) anddecreased serum testosterone (19.4 to 11.5 nmol/l, P < 0.05) concentrations, yet there were no treatment effects on any of theother hormones. Glucose rates of appearance (Ra) anddisappearance (Rd) were lower, and glycerolRa-to-Rd ratio was not affected byE2 administration. O2 uptake, CO2production, and respiratory exchange ratio were not affected byE2; however, there was a decrease in heart rate (P < 0.05). Plasma lactate and glycerol wereunaffected by E2; however, glucose was significantly higher(P < 0.05) during exercise after E2administration. We concluded that short-term oral E2 administration decreased glucose Ra and Rd,maintained plasma glucose homeostasis, but had no effect on substrateoxidation during exercise in men.

  相似文献   

13.
At low nitrogen (N) supply, it is well known that rye has ahigher biomass production than wheat. This study investigateswhether these species differences can be explained by differencesin dry matter and nitrogen partitioning, specific leaf area,specific root length and net assimilation rate, which determineboth N acquisition and carbon assimilation during vegetativegrowth. Winter rye (Secale cereale L.), wheat (Triticum aestivumL.) and triticale (X Triticosecale) were grown in solution cultureat relative addition rates (RN) of nitrate-N supply rangingfrom 0.03–0.18 d-1and at non-limiting N supply under controlledconditions. The relative growth rate (RW) was closely equalto RNin the range 0.03–0.15 d-1. The maximalRW at non-limitingnitrate nutrition was approx. 0.18 d-1. The biomass allocationto the roots showed a considerable plasticity but did not differbetween species. There were no interspecific differences ineither net assimilation rate or specific leaf area. Higher accumulationof N in the plant, despite the same relative growth rate atnon-limiting N supplies, suggests that rye has a greater abilityto accumulate reserves of nitrogen. Rye had a higher specificroot length over a wide range of sub-optimal N rates than wheat,especially at extreme N deficiency (RN=0.03–0.06 d-1).Triticale had a similar specific root length as that of wheatbut had the ability to accumulate N to the same amount as ryeunder conditions of free N access. It is concluded that thebetter adaptation of rye to low N availability compared to wheatis related to higher specific root length in rye. Additionally,the greater ability to accumulate nitrogen under conditionsof free N access for rye and triticale compared to wheat maybe useful for subsequent N utilization during plant growth.In general, species differences are explained by growth componentsresponsible for nitrogen acquisition rather than carbon assimilation.Copyright 1999 Annals of Botany Company Growth analysis, nitrogen, nitrogen productivity, partitioning, specific root length, Secale cereale L.,Triticum aestivum L., X Triticosecale, winter rye, winter wheat, winter triticale.  相似文献   

14.
We tested the null hypothesis that theseverity of injury to single muscle fibers following a singlepliometric (lengthening) contraction is not dependent on the velocityof stretch. Each single permeabilized fiber obtained from extensordigitorum longus muscles of rats was maximally activated and thenexposed to a single stretch of either 5, 10, or 20% strain [%of fiber length (Lf)] ata velocity of 0.5, 1.0, or 2.0 Lf /s. Theforce deficit, the difference between maximum tetanic isometric force(Po) before and after the stretch expressed as apercentage of the control value forPo before the stretch, provided anestimate of the magnitude of muscle injury. Despite a fourfold rangefrom the lowest to the highest velocities, force deficits were notdifferent among stretches of the same strain. At stretches of 20%strain, even an eightfold range of velocities produced no difference inthe force deficit, although 40% of the fibers were torn apart at a velocity of 4 Lf /s. We conclude that, withinthe range of velocities tolerated by single permeabilized fibers, theseverity of contraction-induced injury is not related to the velocityof stretch.

  相似文献   

15.
The objectives of this research were to determine thecontribution of excitation-contraction (E-C) coupling failure to the decrement in maximal isometric tetanic force(Po) in mouse extensor digitorumlongus (EDL) muscles after eccentric contractions and to elucidatepossible mechanisms. The left anterior crural muscles of femaleICR mice (n = 164) wereinjured in vivo with 150 eccentric contractions.Po, caffeine-,4-chloro-m-cresol-, andK+-induced contracture forces,sarcoplasmic reticulum (SR) Ca2+release and uptake rates, and intracellularCa2+ concentration([Ca2+]i)were then measured in vitro in injured and contralateral control EDLmuscles at various times after injury up to 14 days. On the basis ofthe disproportional reduction inPo (~51%) compared with caffeine-induced force (~11-21%), we estimate that E-C coupling failure can explain 57-75% of thePo decrement from 0 to 5 days postinjury. Comparable reductions inPo andK+-induced force (51%), and minorreductions (0-6%) in the maximal SRCa2+ release rate, suggest thatthe E-C coupling defect site is located at the t tubule-SR interfaceimmediately after injury. Confocal laser scanning microscopy indicatedthat resting[Ca2+]iwas elevated and peak tetanic[Ca2+]iwas reduced, whereas peak4-chloro-m-cresol-induced[Ca2+]iwas unchanged immediately after injury. By 3 days postinjury, 4-chloro-m-cresol-induced[Ca2+]ibecame depressed, probably because of decreased SRCa2+ release and uptake rates(17-31%). These data indicate that the decrease inPo during the first several daysafter injury primarily stems from a failure in the E-C couplingprocess.

  相似文献   

16.
Yuan, Huichin, Edward P. Ingenito, and Béla Suki.Dynamic properties of lung parenchyma: mechanical contributions offiber network and interstitial cells. J. Appl.Physiol. 83(5): 1420-1431, 1997.We investigatedthe contributions of the connective tissue fiber network andinterstitial cells to parenchymal mechanics in a surfactant-freesystem. In eight strips of uniform dimension from guinea pig lung, weassessed the storage (G) and loss (G") moduli by usingpseudorandom length oscillations containing a specially designed set ofseven frequencies from 0.07 to 2.4 Hz at baseline, during methacholine(MCh) challenge, and after death of the interstitial cells.Measurements were made at mean forces of 0.5 and 1 g and strainamplitudes of 5, 10, and 15% and were repeated 12 h later in the same,but nonviable samples. The results were interpreted using a linearviscoelastic model incorporating both tissue damping (G) and stiffness(H). The G and G" increased linearly with the logarithmof frequency, and both G and H showed negative strain amplitude andpositive mean force dependence. After MCh challenge, the G andG" spectra were elevated uniformly, and G and H increased by<15%. Tissue stiffness, strain amplitude, and mean force dependencewere virtually identical in the viable and nonviable samples. The G andhence energy dissipation were ~10% smaller in the nonviable samplesdue to absence of actin-myosin cross-bridge cycling. We conclude thatthe connective tissue network may also dominate parenchymal mechanicsin the intact lung, which can be influenced by the tone or contractionof interstitial cells.

  相似文献   

17.
In Pisum sativum L. a third, more severe, allele at the internodelength locus le is identified and named led. Plants homozygousfor led possess shorter internodes and appear relatively lessresponsive to GA20 than comparable le (dwarf) plants. Gene ledmay act by reducing the 3ß-hydroxylation of GA20 tothe highly active GA1 more effectively than does gene le. Theresults indicate that le is a leaky mutant and therefore thatendogenous GA1 influences internode elongation in dwarf (le)plants. Pisum sativum, peas, internode length, genetics, gibberellin, dwarf elongation  相似文献   

18.
Potential carbon-specific growth rates of phytoplankton wereestimated from a series of measurements of photosynthetic radio-carbonuptake over 4- and 24-h exposure periods in the light fieldsof three large limnetic enclosures (‘Lund Tubes’),each providing different limnological and trophic conditions.Photosynthetic behaviour and short-term, chlorophyll-specificcarbon-fixation rates conformed to well-established criteriabut, over 24 h, the net retention represented 23–82% ofthe carbon fixed during the daylight hours. Potential mean growthrates (k'p, of the photo-autotrophic community were calculatedas the net exponential rates of daily carbon-accumulation relativeto derived, instantaneous estimates of the cell carbon-content.Apparent actual community growth rates (k'D were calculatedas the sum of the exponential rates of change of each of themajor species present, corrected for probable rates of in situgrazing and sinking, and expressed relative to the fractionof total biomass for which they accounted. The correspondingvalues were only occasionally similar, k'p generally exceedingK'D by a factor of between 1 and 30 or 1 and 14, depending uponthe carbon:chlorophyll ratio used. The ratio, K'p/K'D was foundto vary inversely both to k'D and to kn, the net rate of changein phytoplankton biomass, suggesting that measured carbon fixationrates merely represent a capacity for cellular increase which,owing to other likely limitations upon growth, is seldom realized.Apparent rates of loss of whole cells do not account for theloss of carbon; that the ‘unaccounted’ loss rates(K'pK'D varied in direct proportion to K'p (i.e., losseswere least when chlorophyll-specific photosynthetic productivitywas itself limited) is best explained by physiological voidingof excess carbon (for instance, by respiration, photorespiration,excretion) prior to the formation of new cells.  相似文献   

19.
Starting in 1996, individual trees of Scots pine (Pinus sylvestrisL.) aged 30 years, were grown in closed-top chambers and exposedto either normal ambient conditions (CON), elevated CO2(approx.700 µmol mol-1; Elev. C), elevated temperature (approx.2 °C and approx. 6 °C above the outside ambient temperatureduring the ‘growing season’ and ‘off season’,respectively; Elev. T) or a combination of elevated CO2and warmertemperature (Elev. CT). Sap flow was monitored simultaneouslyby the constant-power heat balance method in a total of 16 trees,four for each treatment, over a 32 d period in summer 1998 (afterthe completion of needle expansion and branch elongation). Toquantify the contributions of crown and physical environmentalvariables to total crown transpiration, a ‘sun/shade model’was developed and used to partition the changes in transpirationto different sources. The results of the sap flow measurementsindicate that (1) total daily sap flow (Etree.d) varied from0.15–3.41 kg per tree; (2) the treatment effect on Etree.ddependedgreatly on the weather conditions; (3) the cumulative Etree.dforthe 32 d dropped significantly by 22% relative to CON (P =0.038)under Elev. C and increased significantly by 21% (P =0.043)and 16% (P =0.048) under Elev. T and Elev. CT, respectively.In general, the modelled transpiration gave good agreement withthe sap flow results. The model computations showed that, ona typical sunny day in summer, the effect of treatment on crownstomatal conductance was responsible for approx. 80% of thechange inEtree.d , while the increase in needle area and theeffect on total radiation absorption contributed only a smallpercentage. Furthermore, sunlit needles were responsible forover 60% of change in transpiration. The effect of the treatmentson Etree.dwas larger at high temperature and vapour pressuredeficit but was not sensitive to incident daily radiation. Copyright2000 Annals of Botany Company Transpiration model, sap flow, CO2and temperature elevation, environment-controlled chamber, Pinus sylvestris L.  相似文献   

20.
Canonical correlation analysis measures the linear relationshipbetween two random vectors X1 and X2 as the maximum correlationbetween linear combinations of X1 and linear combinations ofX2. Several generalisations of canonical correlation analysisto k2 random vectors X1 ..., Xk have been proposed in the literature(Kettenring, 1971, 1985), based on the principle of maximisingsome generalised measure of correlation. In this paper we proposean alternative generalisation, called common canonical variates,based on the assumption that the canonical variates have thesame coefficients in all k sets of variables. This generalisationis applicable in situations where all Xi have the same dimension.We present normal theory maximum likelihood estimation of commoncanonical variates, and illustrate their use on a morphometricdata set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号