首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blood samples were collected from primiparous sows via indwelling jugular cannulae at 15-min intervals for 12 h before and for 24 h (2 sows) or 48 h (10 sows) after weaning and then every 4 h until behavioural oestrus. Weaning to oestrus intervals ranged from 3 to 10 days and 2 sows showed no signs of oestrus and had not ovulated by Days 11 and 16 after weaning. Prolactin concentrations in plasma decreased significantly (P less than 0.001) and reached basal levels 1-2 h after weaning in all sows whilst plasma progesterone concentrations remained basal until approximately 30 h after the preovulatory LH surge in sows that ovulated. Elevated concentrations of prolactin or progesterone during the post-weaning period were, therefore, not responsible for delayed restoration of cyclicity. Overall, mean LH concentrations rose significantly (P less than 0.001) from 0.22 +/- 0.02 during the 12-h period before weaning to 0.38 +/- 0.03 ng/ml during the 12-h post-weaning period. After weaning, pulsatile and basal LH secretions were markedly increased for sows that showed an early return to oestrus (less than or equal to 4 days) compared with sows showing a longer weaning to oestrus interval but a correlation did not exist between either of these LH characteristics and the time taken to resume cyclicity. Mean LH concentrations before weaning were, however, inversely related (r = -0.649; P less than 0.05) to the weaning to oestrus interval. Overall, mean FSH concentrations rose significantly (P less than 0.001) from 151.1 +/- 6.2 (s.e.m.) ng/ml in the 12-h period immediately before weaning to 187.7 +/- 9.7 ng/ml in the subsequent 12-h period but there was no correlation between FSH concentrations, before or after weaning, and the interval from weaning to oestrus. However, a significant correlation was apparent between ovulation rate and peak concentrations of the rise in FSH after weaning (r = 0.746; P less than 0.05) and overall mean FSH values (r = 0.645; P less than 0.05). It is concluded that both LH and FSH concentrations in peripheral blood rose in response to removal of the suckling stimulus at weanling. The increase in LH pulse frequency associated with weaning was not directly related to the weaning to oestrus interval although a specific pattern of LH secretion was observed in sows showing an early return to oestrus (less than or equal to 4 days).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Père David's deer hinds were treated with GnRH, administered as intermittent i.v. injections (2.0 micrograms/injection at 2-h intervals) for 4 days, or as a continuous s.c. infusion (1.0 micrograms/h) for 14 days. These treatments were given early (February-March) and late (May-June) in the period of seasonal anoestrus. The administration of repeated injections of GnRH increased mean LH concentrations from pretreatment values of 0.54 +/- 0.09 to 2.10 +/- 0.25 ng/ml over the first 8 h of treatment in early anoestrus, and from 0.62 +/- 0.11 to 2.73 +/- 0.49 ng/ml in late anoestrus. The mean amplitude of GnRH-induced LH episodes was greater (P less than 0.01) in late (4.03 +/- 0.28 ng/ml) than in early (3.12 +/- 0.26 ng/ml) anoestrus, but within each replicate (early or late anoestrus), neither mean LH episode amplitude nor mean plasma LH concentrations differed significantly between the four periods of intensive blood sampling. On the basis of their progesterone profiles, 6/12 hinds had ovulated in response to treatment with injections of GnRH (1/6 in early anoestrus and 5/6 in late anoestrus), and oestrus and a preovulatory LH surge were recorded in all of these animals. Oestrus and a preovulatory LH surge were also recorded in one other animal treated in early anoestrus in which progesterone concentrations remained low. The mean times of onset of oestrus (91.0 +/- 1.00 and 62.4 +/- 0.98 h) and of the preovulatory LH surge (85.8 +/- 3.76 and 59.4 +/- 0.25 h) both occurred significantly earlier (P less than 0.001) in animals treated in late anoestrus. Continuous infusion of GnRH to seasonally anoestrous hinds resulted in an increase in mean plasma LH concentrations, but this response did not differ significantly between early (2.15 +/- 0.28 ng/ml) and late (2.48 +/- 0.26 ng/ml) anoestrus. Ovulation, based on progesterone profiles, occurred in 2/7 hinds in early anoestrus and in 4/6 hinds in late anoestrus. Oestrus was detected in all except one of these hinds. The mean time of onset of oestrus occurred earlier in animals treated in late anoestrus (66.2 +/- 0.32 h and 46.7 +/- 0.67 h, P less than 0.01). The administration of GnRH, given either intermittently or continuously, will induce ovulation in a proportion of seasonally anoestrous Père David's deer. However, more animals ovulate in response to this treatment in late than in early anoestrus (75% compared with 23%).  相似文献   

3.
The specific requirement for FSH in the final stages of preovulatory follicle development was assessed in seasonally anoestrous ewes given 2-h injections of GnRH (250 ng/injection), with (N = 10) or without (N = 10) concurrent treatment with bovine follicular fluid (bFF: 2 ml given i.v. at 8-h intervals). Treatment with bFF significantly (P less than 0.01) suppressed plasma FSH concentrations, but, at least for the first 30 h of treatment, did not influence the magnitude of GnRH-induced LH episodes (mean max. conc. 3.00 +/- 0.39 and 3.63 +/- 0.51 ng/ml for bFF-treated and control ewes, respectively). Of 10 animals treated with GnRH for 72 h, 5/5 control ewes showed oestrus and ovulated whereas 0/5 bFF-treated ewes showed oestrus or ovulated in response to GnRH treatment. There was, however, a transient (13.2 +/- 1.0 h) increase in plasma LH concentrations in the ewes given bFF (mean max. conc. 4.64 +/- 1.57 ng/ml), which was coincident with the preovulatory LH surge recorded in animals given GnRH alone. In 10 GnRH-treated ewes slaughtered after 32 h of treatment, the mean diameter of the largest antral follicle was significantly (P less than 0.001) greater in control ewes (5.92 +/- 0.17 mm) than in animals that were also given bFF (3.94 +/- 0.14 mm). In addition, the incidence of atresia in the 3 largest antral follicles present at this time was greater in bFF-treated ewes. These results show that, when plasma FSH concentrations are suppressed by administration of bFF, although the magnitude of GnRH-induced LH episodes is unchanged, preovulatory follicular development is impaired and ovulation does not occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The objective was to determine if progressive changes occurred in incidence of estrus and patterns of luteinizing hormone (LH) after estradiol benzoate (EB) administration at three stages of lactation. Estradiol benzoate (800 micrograms) was injected at the beginning of the second (7.8 +/- 0.3 days, range 7-8, n = 4), third (15.6 +/- 0.3 days, range 15-16 days, n = 5), or fourth (23.3 +/- 0.5 days, range 22-24, n = 4) wk of lactation. Interval to estrus (h) and proportion in estrus (in parentheses) were 72 (1/4), 88.5 (4/5), and 99 (4/4; pooled SEM = 3.5) for the second, third, and fourth weeks, respectively. Only one animal ovulated during lactation (third week). This animal had a progesterone concentration of 17 ng/ml 1 wk after estrus and an LH concentration above 2.0 ng/ml for 72 through 90 h after EB. In other sows, LH remained less than 1.0 ng/ml after EB. Patterns of LH after EB in sows treated during the fourth week of lactation were increased to a maximum of 0.76 ng/ml by 120 h after EB, which was greater than for those treated during the second or third week (maxima of 0.38 and 0.32 ng/ml, respectively; pooled SEM = 0.07; p less than 0.05). Concentrations of LH in sows that exhibited estrus were greater both before and after treatment than in sows that did not exhibit estrus after EB (p less than 0.05). By 2 wk after weaning, 8 sows had ovulated (6 of these exhibited estrus), and there were no effects of stage of lactation on these responses. We concluded that the behavioral responsiveness to EB increased as lactation progressed. The increased LH in sows treated during the fourth week indicated a partial recovery of the positive feedback response to EB. These data suggested that separate mechanisms caused behavioral and gonadotropin responses to EB in lactating sows.  相似文献   

5.
A specific sheep LH radioimmunoassay was validated for the measurement of goat LH, and used to monitor luteal-phase LH episodes and the preavulatory LH surge in progestagen sponge-synchronized cycling goats. No luteal-phase LH episodes were detected during 12 h of frequent (15-min) blood sampling in 2 goats. A preovulatory LH surge was recorded in 5/5 goats, with a mean amplitude of 45.4 +/- 7.2 ng/ml and a mean time of onset of 38.4 +/- 1.2 h after removal of a progestagen-impregnated sponge. In anoestrous goats, single i.v. injections of 1000 and 2000 ng GnRH induced LH episodes with a mean amplitude of 2.04 +/- 0.11 and 3.67 +/- 0.06 ng/ml respectively, but injections of 250 or 500 ng did not consistently elevate LH concentrations. Progestagen-primed, seasonally anoestrous lactating goats were treated with repeated injections of 1500 ng GnRH (every 2 h for 52 or 78 h) in May 1985 or 1986. All 10 had kidded in March of the same year, and were consequently at peak lactation at the time of GnRH treatment. A preovulatory LH surge was detected in 9 goats with a mean time of onset of 59.5 +/- 2.9 h (1985) or 39.6 +/- 3.3 h (1986) after vaginal sponge removal. All animals displayed oestrus and ovulated, and 9 of the goats were mated: in 5 of these animals pregnancies were successfully carried to term. The results show episodic LH release in response to GnRH and indicate that ovulation can be induced in seasonally anoestrous goats, even at peak lactation, and normal pregnancies may result.  相似文献   

6.
The pattern of change in plasma progesterone and LH concentrations was monitored in Clun Forest ewes at a natural oestrus and compared to that observed after removal of progesterone implants. The rate of decline in plasma progesterone concentrations after implant withdrawal (1.8 +/- 0.2 ng/ml h-1) was significantly greater (P less than 0.001) than that observed at natural luteolysis (0.2 +/- 0.1 ng/ml h-1), and this resulted in an abnormal pattern of change in tonic LH secretion up to the time of the preovulatory LH surge. This more rapid rate of progesterone removal was also associated with a shortening of the intervals from the time that progesterone concentrations attained basal values to the onset of oestrus (P less than 0.05) and the onset of the preovulatory LH surge (P less than 0.01). However, there were no significant differences in the duration of the LH peak, preovulatory peak LH concentration, ovulation rate or the pattern of progesterone concentrations in the subsequent cycle. It is suggested that the abnormal patterns of change in progesterone and tonic LH concentrations may be one factor involved in the impairment of sperm transport and abnormal patterns of oestradiol secretion known to occur at a synchronized oestrus.  相似文献   

7.
In two experiments 48 prepuberal Merino ewe lambs were injected with oestradiol-17 beta (E2) or saline to study the effect of E2 on their plasma LH levels and on oestrus and ovulation. In the three groups which received 30 (experiment I), 50 and 30 (experiment II) microgram E2 respectively, 27 out of 28 lambs showed an LH response, the corresponding mean LH peaks being 64.3 +/0 22.5, 153.6 +/-33.4 and 91.7 +/- 16.9 ng/ml at mean intervals of 11.1, 11.2 and 10.5 h, respectively, after injection. None of the 20 lambs in the control groups had an LH level higher than 18 ng/ml 12 h after injection. In the three E2 groups, 41.7, 62.5 and 37.5% of animals showed oestrus within 26 h of injection while in the control groups only one animal showed oestrus. Of 13 animals showing oestrus in the E2 groups, 11 failed to ovulate. The mean pre-injection plasma FSH level in experiment I was 102.7 ng/ml, and in four 5--7-month-old lambs over several weeks uas 155.3 ng/ml. Despite these high pre-injection levels of FSH, it appears that the follicles were unable to respond to the LH peak which followed the E2 injection.  相似文献   

8.
The timing and dosage of oestradiol benzoate injected after weaning was critical with respect to the pattern of behavioural oestrus and the ovarian stimulation achieved; treatment on the day of weaning (Day 0) and Day 1 with 60 micrograms oestradiol benzoate/kg body wt produced poor ovulatory responses and abnormal oestrous behaviour. Treatment on Day 2 with 30 micrograms oestradiol benzoate/kg resulted in consistent oestrus and ovulatory responses although the ovulation rates (10 . 6 +/- 1 . 1 in 3-week and 12 . 2 +/- 1 . 7 in 5-week weaned sows) were below those expected in fertile untreated sows weaned at these times. The timing of the preovulatory LH surge (53 . 6 +/- 2 h after oestradiol benzoate) was closely synchronized in all sows and a similar synchronous rise in plasma progesterone concentrations 100 +/- 4 h after oestradiol benzoate suggests a similar synchrony of ovulation. The magnitude of the LH and FSH responses to oestradiol benzoate were similar to those that occur in untreated sows and similar differences also existed in gonadotrophin secretion related to the length of lactation.  相似文献   

9.
Suckling, a common practice in smallholder dairy-farming systems in the developing world, delays the onset of post-partum ovarian activity in dairy buffalo. The present study was designed to assess the effect of suckling on pituitary function in lactating buffaloes 25-35 days post-partum. Six suckled and nine non-suckled buffaloes were challenged intravenously with a bolus injection of GnRH (20microg buserelin acetate; Receptal). Heparinized venous blood samples were collected at 15min intervals for 2h before and up to 4h after GnRH for luteinizing hormone (LH) estimation. Pretreatment basal LH concentrations were similar in the suckled (0.6+/-0.2ng/ml) and the non-suckled (0.5+/-0.1ng/ml) buffaloes. All but one suckled buffaloes released a LH surge, starting 15-60min post-GnRH treatment, which lasted for 180-225min. While one suckled buffalo did not respond to GnRH, the LH response in the remaining suckled buffaloes was significantly less than in the non-suckled buffaloes in terms of peak LH concentrations (14.3+/-2.7ng/ml versus 26.2+/-4.3ng/ml) and area under the LH curve (1575.6+/-197.4mm(2) versus 2108.9+/-323.9mm(2)). The LH response was least in suckled buffaloes challenged with GnRH while in the luteal phase of an oestrus cycle and with plasma progesterone concentration >1ng/ml. In conclusion, suckling suppressed pituitary responsiveness to exogenous GnRH challenge in post-partum buffaloes.  相似文献   

10.
Ten sows, three entire and seven which had been ovariectomized at different stages of late gestation, were observed for post-partum oestrus. Serial blood samples were collected from six sows during the pre-and post-partum periods, and plasma oestrogen concentrations determined by radioimmunoassay. Morphological aspects of ovarian activity in the entire sows were examined at laparotomy and at autopsy. Although peak values of oestrogen concentration in the plasma varied from 3-9 to 8-0 ng/ml between individuals, the pattern of oestrogen levels was similar for control and ovariectomized sows. Peak concentrations occurred just before parturition, and the timing of ovariectomy did not affect the incidence of the oestrogen peak. Oestrus was detected in one control and one ovariectomized sow at 46 and 40 hr post partum respectively, there being no evidence of ovarian activity in the entire sows. The occurrence of post-partum oestrus in a sow ovariectomized at Day 108 of gestation indicates that this phenomenon is not directly connected with ovarian secretion of oestrogens. The post-partum oestrus is apparently a result of the peak of feto-placental oestrogens that occurs at parturition.  相似文献   

11.
Ten gilts were examined for peripheral plasma levels of progesterone and oestrogens 3 weeks before and up to 8 weeks after parturition. The sows were slaughtered at different intervals after parturition and the ovaries were examined. Peripheral plasma levels of progesterone decreased dramatically from about 8ng/ml two days before parturition to about 2 ng/ml on the day before parturition. After parturition the mean progesterone level was about 1.5 ng/ml. Maximum oestrone levels of about 7 ng/ml were obtained two days before parturition. After parturition the level dropped to below 0.1 ng/ml. Three sows showed high levels of oestradiol (75–440 pg/ml) without signs of heat during the lactation. In no case were ovulated follicles or periodic corpora lutea registered.  相似文献   

12.
Previous experiments have demonstrated differences in various follicular characteristics between the prolific Chinese Meishan (MS) pig and European Large-White (LW) hybrids and the present experiment was designed to compare the cAMP response to LH by granulosa and theca cells in vitro between the two breeds. Ovaries were recovered from MS (n = 7) and LW hybrid (n = 8) gilts on the day before predicted oestrus and the 12 largest follicles dissected. Quadruplicate aliquots of granulosa cells or minced theca tissue were incubated for 1 h in the presence of 0, 0.1, 1.0, 10, 100 or 1000 ng/ml LH and cAMP production measured. Follicles from MS gilts were smaller (5.9 vs. 7.7 mm; P < 0.001), contained less fluid (81.5 vs. 177.4 microl; P < 0.001), had fewer granulosa cells (3.8 vs. 5.3 x 10(6); P < 0.01) and less theca tissue (30.3 vs. 50.5 mg; P < 0.05) than those from LW hybrid animals. Mean follicular fluid oestradiol concentration was > or = 149 ng/ml in all animals and tended to be higher in the MS follicles (P = 0.07). LH stimulated cAMP production by granulosa and theca cells from both breeds (P < 0.001). Although there was no overall breed effect for the granulosa cells, there was a significant (P < 0.001) interaction between LH dose and breed in the granulosa cells, whether cAMP production was expressed per 10(6) cells or per follicle. In the theca incubations, cAMP production by MS tissue was higher (P < 0.01) when results were expressed per mg tissue and again there was an interaction (P < 0.001) between LH dose and breed whether cAMP production was expressed per mg tissue or per follicle. For both tissue types, MS follicles produced more cAMP at the higher LH doses. In conclusion, this study has shown that MS granulosa and theca tissue respond differently to increasing doses of LH in terms of cAMP production in vitro compared to LW hybrid tissue and this supports previous suggestions of enhanced maturity of MS follicles in the late follicular phase.  相似文献   

13.
Seventeen primiparous sows, anestrous for 41 +/- 4 days after weaning, received i.m. injections of 500 mug estradiol benzoate (EB) or corn oil. At 48 hr after treatment, LH averaged 12.1 +/- 2.6 ng/ml in EB-treated sows and 0.7 +/- 0.1 ng/ml in corn oil-treated sows. At 55 hr after EB or corn oil, each sow was given 50 mug gonadotropin releasing hormone (GnRH). Average LH 1 hr after GnRH was 5.7 +/- 1.1 and 5.1 +/- 0.9 ng/ml in EB- and corn oil-treated sows, respectively. All EB-treated sows exhibited estrus 2.3 +/- 0.2 days after treatment and were mated. None of the corn oil-treated sows exhibited estrus and all were slaughtered two weeks after treatment. Examination of reproductive tracts revealed that the ovaries of corn oil-treated sows were small and did not contain corpora lutea. In mated sows, progesterone concentrations in blood two weeks after mating indicated luteal function in eight of the nine animals. Positive pregnancy diagnoses were made in all eight animals; however, only three sows farrowed, with litter sizes of four, five and seven, respectively. Results of the present experiment indicate that the hypothalamus and anterior pituitary of long-term anestrous sows are capable of responding to endocrine stimuli (i.e. estradiol and GnRH). Moreover, estradiol induced estrus and ovulation, but subsequent farrowing rate was only 33 percent and size of litters was small.  相似文献   

14.
The present experiment was designed to determine if and how exogenous ACTH replicates the effects of stressors to delay the preovulatory LH surge in sheep. Twenty-four hours after oestrous synchronisation with prostaglandin in the breeding season, groups of 8-9 intact ewes were injected with 50 microg oestradiol benzoate (0 h) followed 8 h later by 3 injections of saline or GnRH (500 ng each, i.v.) at 2 h intervals (controls). Two further groups received an additional 'late' injection of ACTH (0.8 mg i.m.) 7.5 h after oestradiol, i.e., 0.5 h before the first saline or GnRH challenge. To examine if the duration of prior exposure to ACTH was important, another group of ewes was given ACTH 'early', i.e. 2.5 h before the first GnRH injection. The first GnRH injection produced a maximum LH response of 1.9+/-0.4 ng/ml which was significantly (p < 0.01) enhanced after the second and third GnRH challenge (7.1+/-1.5 ng/ml and 7.0+/-1.7 ng/ml, respectively; 'self-priming'). Late ACTH did not affect the LH response after the first GnRH challenge (1.9+/-0.4 vs. 1.8+/-0.3 ng/ml; p > 0.05) but decreased maximum LH concentrations after the second GnRH to 35% (7.1+/-1.5 vs. 4.6+/-1.1 ng/ml; p = 0.07) and to 40% after the third GnRH (7.0+/-1.7 vs. 4.0+/-0.8 ng/ml; p = 0.05). When ACTH was given early, 4.5 h before the second GnRH, there was no effect on this LH response suggesting that the effect decreases with time after ACTH administration. Concerning the oestradiol-induced LH surge, exogenous GnRH alone delayed the onset time (20.5+/-2.0 vs. 27.8+/-2.1 h; p > 0.05) and reduced the duration of the surge (8.5+/-0.9 vs. 6.7+/-0.6 h; p > 0.05). The onset of the LH surge was observed within 40 h after oestradiol on 29 out of 34 occasions in the saline +/- GnRH treated ewes compared to 11 out of 34 occasions (p < 0.05) when ACTH was also given, either late or early. In those ewes that did not have an LH surge by the end of sampling, plasma progesterone concentrations during the following oestrous cycle increased 2 days later suggesting a delay, not a complete blockade of the LH surge. In conclusion, we have revealed for the first time that ACTH reduces the GnRH self-priming effect in vivo and delays the LH surge, at least partially by direct effects at the pituitary gland.  相似文献   

15.
Events in the normal menstrual cycle of the endangered Sulawesi Crested Black Macaque (Macaca nigra) were characterized. Daily blood samples were obtained during 10 menstrual cycles from five M. nigra demonstrating regular cycles. The amount of perineal tumescence was scored daily. Serum levels of estradiol and progesterone were determined by RIA, serum LH levels were determined by the mouse Leydig cell bioassay, and serum FSH levels were determined by the rat granulosa cell aromatase bioassay. Cycle length was 39.8 +/- 1.0 days (mean +/- SEM) with an LH surge occurring 25 +/- 1.5 days from the onset of menses. After menses, both LH and estradiol were initially depressed, with estradiol first exceeding 50 pg/ml 8 days before the LH surge. In five cycles, peak estradiol levels (340 +/- 44 pg/ml) occurred on the day of the LH surge (637 +/- 58 ng/ml) and in the other five cycles, on the day before the LH surge. There was a broad increase of FSH in midcycle without a well-defined surge corresponding to the LH surge. Progesterone began increasing on the day of the LH surge and reached peak levels (6.8 +/- 0.96 ng/ml) 8 days later. Maximal perineal tumescence was generally associated with the time of the LH surge, but variation between animals made it impossible to predict accurately the day of the LH surge by perineal tumescence scores alone.  相似文献   

16.
Peripheral plasma concentrations of LH, oestradiol-17 beta and progesterone were measured in 13 mature swamp buffalo cows at 4-h intervals from 36-40 h before until 36-40 h after the onset of oestrus. Mean LH concentrations increased sharply to a peak of 35 ng/ml and returned to basal levels of 5 ng/ml within a 12-h period beginning soon after the onset of oestrus. Mean oestradiol-17 beta concentrations were within the range 9-13 pg/ml from 36-40 h before until 12-16 h after the onset of oestrus, and within the range 7-9 pg/ml thereafter. Progesterone concentrations remained around 0.1 ng/ml throughout the sampling period. There were no significant differences in hormone concentrations or changes between cows that conceived and those that did not conceive to artificial insemination 12-24 h after onset of oestrus.  相似文献   

17.
One sow bled at 30--60-min intervals for 48 h at 5 and 4 days before parturition had mean +/- s.e.m. relaxin levels of 5.0 +/- 0.48 ng/ml and 5.5 +/- 0.44 ng/ml for each 24-h period respectively. This sow and another were bled at frequent intervals during parturition; both showed considerable fluctuations in their relaxin levels but no consistent peaks in relation to each birth. Mean levels during parturition were 10.7 +/- 0.46 ng/ml and 13.4 +/- 0.81 ng/ml respectively, both significantly higher than the levels at 4 and 5 days before birth. Relaxin levels in two lactating sows rose acutely during nursing, showing a 3-fold rise in one animal and an 8-fold rise in the other. Results from a third sow during an extended period of nuzzling and sucking by the piglets showed multiple peaks of relaxin immunoactivity associated with each nuzzling/sucking stimulus.  相似文献   

18.
The changes of the electrical impedance in the vaginal vestibule during the oestrous cycle and the influence of sow parity on the vestibular impedance in oestrus were examined. Primiparous and multiparous sows of the Large White breed were used. Oestrus was tested via exposure of sows to a sexually mature boar. The criterion for conformation of ovulation was the increase in plasma progesterone levels above 12.5nmoll(-1) on day 8 and 12 after oestrus onset. A two-terminal method was used to measure the impedance. The vestibular impedance rose slightly in the first day after weaning. The impedance increased markedly during oestrus (P<0.01) and decreased during early dioestrus (P<0.01). No significant changes were observed thereafter. The individual sows reached the peak of vestibular impedance between 1 and 3 days after oestrus onset. The parity of sows did not significantly influence the impedance values during oestrus. The study showed that the impedance changes in the vaginal vestibule during peri-oestrus are considerably different from those described earlier in the vagina and that sow parity does not affect the vestibular impedance in oestrus.  相似文献   

19.
The effect of weaning the 4–5 heaviest piglets in the litter on day 33 of lactation and the remainder 2 days later (fractionated weaning) on plasma levels of prolactin, Cortisol, oestradiol-17β (E2), progesterone (P4) and LH, as well as on the weaning to oestrus interval in primiparous sows was studied. Twelve crossbred sows were grouped into 6 pairs according to farrowing date and litter size. The litter of 1 sow in each pair (F) was weaned in 2 stages, and the other conventionally weaned at 35 days (C). Blood samples were collected via a permanent jugular vein catheter every 3 h from 9 am to 9 pm daily throughout the experimental period, and intensively at 15 min intervals for 12 h on the day of first and final weaning and for 6 h on the day after each weaning. All sows were slaughtered following their first post-weaning oestrus and the reproductive organs were macroscopically examined. Lactational oestrus was not observed in any of the sows. Sows from 5 out of 6 pairs showed oestrus within 8 days of weaning and post-mortem examination showed normal ovulation. There was a tendency for the F sows to have a shorter weaning to oestrus interval, as compared with the C sows (5 of 6 pairs, 4.8 days v 5.6 days). The plasma levels of prolactin around weaning were not significantly different between the 2 groups. Within 6 h after final weaning, the prolactin concentrations decreased gradually from 7.6 and 8.7 to 1.6 and 1.7 µg/l in the control and treatment groups, respectively. The plasma levels of Cortisol, showing a diurnal rhythm (with the lowest level at 6 and/or 9 p m), did on no occasion differ between the 2 groups. On the day of final weaning, no diurnal rhythm was observed, with Cortisol remaining high at 6 and 9 pm. The plasma levels of E2 and P4 were low until final weaning in both groups. After final weaning the E2 levels rose faster in the F sows than in the C sows, to 44.3 and 34.8 pmol/l, respectively, on day 2 (p < 0.01). No significant differences in levels of plasma LH and the number of LH pulses were observed between the groups. After final weaning the average and base levels of LH and the number of LH pulse(s) increased significantly.  相似文献   

20.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号