首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that cells deleted for SNF3, HXT1, HXT2, HXT3, HXT4, HXT6, and HXT7 do not take up glucose and cannot grow on media containing glucose as a sole carbon source. The expression of Hxt1, Hxt2, Hxt3, Hxt6, or Gal2 in these cells resulted in glucose transport and allowed growth on glucose media. In contrast, the expression of Snf3 failed to confer glucose uptake or growth on glucose. HXT6 is highly expressed on raffinose, low glucose, or nonfermentable carbon sources but is repressed in the presence of high concentrations of glucose. The maintenance of HXT6 glucose repression is strictly dependent on Snf3 and not on intracellular glucose. In snf3 delta cells expression of HXT6 is constitutive even when the entire repertoire of HXT genes is present and glucose uptake is abundant. In addition, glucose repression of HXT6 does not require glucose uptake by HXT1, HXT2, HXT3 or HXT4. We show that a signal transduction pathway defined by the Snf3-dependent hexose regulation of HXT6 is distinct from but also overlaps with general glucose regulation pathways in Saccharomyces cerevisiae. Finally, glucose repression of ADH2 and SUC2 is intact in snf3 delta hxt1 delta hxt2 delta hxt3 delta hxt4 delta hxt6 delta hxt7 delta gal2 cells, suggesting that the sensing and signaling mechanism for general glucose repression is independent from glucose uptake.  相似文献   

2.
The HXT2 gene of the yeast Saccharomyces cerevisiae was identified on the basis of its ability to complement the defect in glucose transport of a snf3 mutant when present on the multicopy plasmid pSC2. Analysis of the DNA sequence of HXT2 revealed an open reading frame of 541 codons, capable of encoding a protein of Mr 59,840. The predicted protein displayed high sequence and structural homology to a large family of procaryotic and eucaryotic sugar transporters. These proteins have 12 highly hydrophobic regions that could form transmembrane domains; the spacing of these putative transmembrane domains is also highly conserved. Several amino acid motifs characteristic of this sugar transporter family are also present in the HXT2 protein. An hxt2 null mutant strain lacked a significant component of high-affinity glucose transport when under derepressing (low-glucose) conditions. However, the hxt2 null mutation did not incur a major growth defect on glucose-containing media. Genetic and biochemical analyses suggest that wild-type levels of high-affinity glucose transport require the products of both the HXT2 and SNF3 genes; these genes are not linked. Low-stringency Southern blot analysis revealed a number of other sequences that cross-hybridize with HXT2, suggesting that S. cerevisiae possesses a large family of sugar transporter genes.  相似文献   

3.
Roles of multiple glucose transporters in Saccharomyces cerevisiae.   总被引:24,自引:4,他引:20       下载免费PDF全文
In Saccharomyces cerevisiae, TRK1 and TRK2 are required for high- and low-affinity K+ transport. Among suppressors of the K+ transport defect in trk1 delta trk2 delta cells, we have identified members of the sugar transporter gene superfamily. One suppressor encodes the previously identified glucose transporter HXT1, and another encodes a new member of this family, HXT3. The inferred amino acid sequence of HXT3 is 87% identical to that of HXT1, 64% identical to that of HXT2, and 32% identical to that of SNF3. Like HXT1 and HXT2, overexpression of HXT3 in snf3 delta cells confers growth on low-glucose or raffinose media. The function of another new member of the HXT superfamily, HXT4 (previously identified by its ability to suppress the snf3 delta phenotype; L. Bisson, personal communication), was revealed in experiments that deleted all possible combinations of the five members of the glucose transporter gene family. Neither SNF3, HXT1, HXT2, HXT3, nor HXT4 is essential for viability. snf3 delta hxt1 delta hxt2 delta hxt3 delta hxt4 delta cells are unable to grow on media containing high concentrations of glucose (5%) but can grow on low-glucose (0.5%) media, revealing the presence of a sixth transporter that is itself glucose repressible. This transporter may be negatively regulated by SNF3 since expression of SNF3 abolishes growth of hxt1 delta hxt2 delta hxt3 delta hxt4 delta cells on low-glucose medium. HXT1, HXT2, HXT3, and HXT4 can function independently: expression of any one of these genes is sufficient to confer growth on medium containing at least 1% glucose. A synergistic relationship between SNF3 and each of the HXT genes is suggested by the observation that SNF2 hxt1 delta hxt2 delta hxt3 delta hxt4 delta cells and snf3 delta HXT1 HXT2 HXT3 HXT4 cells are unable to grow on raffinose (low fructose) yet SNF3 in combination with any single HXT gene is sufficient for growth on raffinose. HXT1 and HXT3 are differentially regulated. HXT1::lacZ is maximally expressed during exponential growth whereas HXT3::lacZ is maximally expressed after entry into stationary phase.  相似文献   

4.
Two novel genes affecting hexose transport in the yeast Saccharomyces cerevisiae have been identified. The gene HXT1 (hexose transport), isolated from plasmid pSC7, was sequenced and found to encode a hydrophobic protein which is highly homologous to the large family of sugar transporter proteins from eucaryotes and procaryotes. Multicopy expression of the HXT1 gene restored high-affinity glucose transport to the snf3 mutant, which is deficient in a significant proportion of high-affinity glucose transport. HXT1 was unable to complement the snf3 growth defect in low copy number. The HXT1 protein was found to contain 12 putative membrane-spanning domains with a central hydrophilic domain and hydrophilic N- and C-terminal domains. The HXT1 protein is 69% identical to GAL2 and 66% identical to HXT2, and all three proteins were found to have a putative leucine zipper motif at a consensus location in membrane-spanning domain 2. Disruption of the HXT1 gene resulted in loss of a portion of high-affinity glucose and mannose transport, and wild-type levels of transport required both the HXT1 and SNF3 genes. Unexpectedly, expression of beta-galactosidase activity by using a fusion of the lacZ gene to the HXT1 promoter in a multicopy plasmid was maximal during lag and early exponential phases of growth, decreasing approximately 100-fold upon further entry into exponential growth. Deletion analysis of pSC7 revealed the presence of another gene (called ORF2) capable of suppressing the snf3 null mutant phenotype by restoring high-affinity glucose transport and increased low-affinity transport.  相似文献   

5.
6.
Lai MT  Liu DY  Hseu TH 《Biotechnology letters》2007,29(8):1287-1292
The promoters of high-affinity hexose transporter, HXT6 and HXT7, are sufficient for complementary expression of invertase to restore the growth of Saccharomyces cerevisiae in raffinose medium. The HXT7 promoter produced higher invertase activity at 139- and 30-fold of the basal activity in strains GN 3C.2 and W303-1, respectively. In addition, the HXT7 promoter expressed 3- to 9-fold more of enhanced green fluorescent protein than that of the constitutive ADH1 in three different S. cerevisiae strains, even during short-term incubation in glucose medium. Therefore, HXT7 promoter could be used for heterologous protein expression in S. cerevisiae.  相似文献   

7.
The uptake of 3H-labeled choline by a suspension of isolated type II epithelial cells from rat lung has been studied in a Ringer medium. Uptake was linear for 4 min at both 0.1 μm and 5.0 μm medium choline; at 5 μm, only 10% of the label was recovered in a lipid fraction. Further experiments were conducted at the low concentration (0.1 μm), permitting characterization of the properties of high-affinity systems. Three fractions of choline uptake were detected: (i) a sodium-dependent system that was totally inhibited by hemicholinium-3 (HC-3); (ii) a sodium-independent uptake, when Na+ was replaced by Li+, K+ or Mg2+, inhibited by HC-3; (iii) a residual portion persisting in the absence of Na+ and unaffected by HC-3. Choline uptake was sigmoidally related to the medium Na+ concentration. Kinetic properties of the uptake of 0.1 μm 3H-choline in the presence and absence of medium Na+ were examined in two ways. (a) Inhibition by increasing concentrations of unlabeled choline (0.5–100 μm) was consistent with the presence of two Michaelis-Menten-type systems in the presence of Na+; a Na+-dependent portion (a mean of 0.52 of the total) had a K m for choline of 1.5 μm while K m in the absence of Na+ (Li+ substituting) was 18.6 μm. (b) Inhibition by HC-3 (0.3–300 μm) gave Ki values of 1.7 μm and 5.0 μm HC-3 for the Na+-dependent and -independent fractions. The apparent K m of the Na+-dependent uptake is lower than that reported previously for lung-derived cells and is in the range of the K m values reported for high-affinity, Na+-dependent choline uptake by neuronal cells. Received: 18 February 1997/Revised: 7 December 1997  相似文献   

8.
We carried out a screen for Cryptococcus neoformans genes involved in resistance to copper ion toxicity and identified a new hexose transporter (Hxt) gene, HXT1. Hxt1 consists of 520 amino acids and functions to transport hexoses such as glucose. Although Hxt1 conferred copper resistance to Saccharomyces cerevisiae, disruption of the HXT1 gene showed that Hxt1 is not necessary for copper resistance. In virulence tests, an hxt1 mutant strain showed 12% less phenoloxidase activity than the wild-type strain, and no difference in the ability to form melanin was identified. In addition, the hxt1 mutant strain showed virulence similar to that of the wild-type strain in experiments with Caenorhabditis elegans. However, the hxt1 mutant strain generated larger capsules than were generated by the wild-type strain. Thus, Hxt1 appears to be involved in capsule formation.  相似文献   

9.
Mutants of Saccharomyces cerevisiae with defects in sucrose or raffinose fermentation were isolated. In addition to mutations in the SUC2 structural gene for invertase, we recovered 18 recessive mutations that affected the regulation of invertase synthesis by glucose repression. These mutations included five new snf1 (sucrose nonfermenting) alleles and also defined five new complementation groups, designated snf2, snf3, snf4, snf5, and snf6. The snf2, snf4, and snf5 mutants produced little or no secreted invertase under derepressing conditions and were pleiotropically defective in galactose and glycerol utilization, which are both regulated by glucose repression. The snf6 mutant produced low levels of secreted invertase under derepressing conditions, and no pleiotropy was detected. The snf3 mutants derepressed secreted invertase to 10-35% the wild-type level but grew less well on sucrose than expected from their invertase activity; in addition, snf3 mutants synthesized some invertase under glucose-repressing conditions.--We examined the interactions between the different snf mutations and ssn6, a mutation causing constitutive (glucose-insensitive) high-level invertase synthesis that was previously isolated as a suppressor of snf1. The ssn6 mutation completely suppressed the defects in derepression of invertase conferred by snf1, snf3, snf4 and snf6, and each double mutant showed the constitutivity for invertase typical of ssn6 single mutants. In contrast, snf2 ssn6 and snf5 ssn6 strains produced only moderate levels of invertase under derepressing conditions and very low levels under repressing conditions. These findings suggest roles for the SNF1 through SNF6 and SSN6 genes in the regulation of SUC2 gene expression by glucose repression.  相似文献   

10.
HXT4, a new member of the hexose transporter (HXT) family in Saccharomyces cerevisiae was identified by its ability to suppress the snf3 mutation in multicopy. Multicopy HXT4 increases both high and low affinity glucose transport in snf3 strains and increases low and high affinity transport in wild-type strains. Characterization of HXT4 led to the discovery of a new class of multicopy suppressors of glucose transport defects: regulatory elements in the promoters of the HXT genes. We have designated these sequences DDSEs (DNA sequence dependent suppressing element). Multicopy HXT4 and DDSEs in the HXT1 HXT2, HXT3 and HXT4 promoters were found to restore growth to snf3 and grr1 strains on low glucose media. The DDSE in the HXT4 promoter was refined to a 340-bp sequence 450 bp upstream of the HXT4 translational start. This region was found to contain an 183-amino acid open reading frame. Extensive analysis indicates that the DNA sequence itself and not the encoded protein is responsible for suppression. The promoters of SNF3 and of other glycolytic genes examined did not suppress snf3 in multicopy. Suppression of snf3 by DDSE is dependent on the presence of either HXT2 or HXT3.  相似文献   

11.
A set of Saccharomyces cerevisiae strains with variable expression of only the high-affinity Hxt7 glucose transporter was constructed by partial deletion of the HXT7 promoter in vitro and integration of the gene at various copy numbers into the genome of an hxt1-7 gal2 deletion strain. The glucose transport capacity increased in strains with higher levels of HXT7 expression. The consequences for various physiological properties of varying the glucose transport capacity were examined. The control coefficient of glucose transport with respect to growth rate was 0.54. At high extracellular glucose concentrations, both invertase activity and the rate of oxidative glucose metabolism increased manyfold with decreasing glucose transport capacity, which is indicative of release from glucose repression. These results suggest that the intracellular glucose concentration produces the signal for glucose repression.  相似文献   

12.
The methionine residues at positions 17, 104, 208, 214, 292, 315, 324, and 446 in the primary amino acid sequence of a truncated Bacillus sp. TS-23 α-amylase (His6-tagged BLAΔNC) was changed to oxidative-resistant leucine by site-directed mutagenesis. The mutant enzymes with an apparent molecular mass of approximately 54 kDa were overexpressed in recombinant Escherichia coli. The specific activity for Met315Leu and Met446Leu was decreased by more than 76%, while Met17Leu, Met104Leu, Met208Leu, Met214Leu, Met292Leu, and Met324Leu showed 247, 128, 37, 260, 232, and 241%, respectively, higher activity than the wild-type enzyme. In comparison with wild-type enzyme, a lower K m value was observed for all mutant enzymes. The 3.2- and 4.5-fold increases in the catalytic efficiency (k cat/K m) for Met208Leu and Met324Leu, respectively, were partly contributed by a 68% and 38% decrease in K m values. Wild-type enzyme was sensitive to chemical oxidation, but Met208Leu was stable even in the presence of 500 mM H2O2. Except for Met214Leu, which was quite sensitive to H2O2, the other mutants showed a profile of oxidative inactivation similar to that of the wild-type enzyme. These observations indicate that the oxidative stability of His6-tagged BLAΔNC can be improved by replacement of the critical methionine residue with leucine. Received: 12 April 2002 / Accepted: 8 June 2002  相似文献   

13.
We have identified two types of invertases, one bound ionically and the other covalently to the particulate fraction in grains of heat tolerant C 306 and heat susceptible WH 542 cultivars of wheat (Triticum aestivum L.). The cell walls contained a high level of invertase activity, of which 79.2–72.8% was extractable by 2 M NaCl and 14.9–21.1% by 0.5% EDTA in C 306 and WH 542, respectively. The NaCl-released invertase constituted the predominant fraction. Using 5–100 mM sucrose and pH range of 4.0–7.0, the apparent Michaelis constant (K m, enzyme substrate affinity measure) of enzyme ranged from 5.73 to 16.06 mM for C 306 and from 6.08 to 19.86 mM for WH 542. The V max (maximum catalytic rate) values at these pH were higher in C 306 (0.63–11.04 μg sucrose hydrolysed min−1) than WH 542 (0.51–8.73 μg sucrose hydrolysed min−1). By employing photo-oxidation and by studying the effect of pH on K m and V max, the involvement of histidine and α-carboxyl groups at the active site of the enzyme was indicated. The two cultivars also showed differential response in terms of thermodynamic properties of the enzyme i.e. energy of activation (E a), enthalpy change (ΔH) and entropy change (ΔS). NaCl-released invertase showed differential response to metal ions in two cultivars suggesting their distinctive nature. Mn2+, Cu2+, Hg2+, Mg2+, Zn2+ and Cd2+ were strong inhibitors in WH 542 as compared to C 306 while K+, Ca2+ were stimulators in both the cultivars. Overall the results suggest that genetic differences exist in wall bound invertase properties of wheat grains as evident in its altered kinetic behaviour.  相似文献   

14.
Plant roots accumulate potassium from a wide range of soil concentrations, utilizing at least two distinct plasma membrane uptake systems with different affinities for the cation. Although details on the structure and function of these transporters are beginning to emerge many prominent questions remain concerning how these proteins function in planta. Such questions can be addressed through the use of well-defined transport mutants. Csi52, a caesium-insensitive mutant of Arabidopsis thaliana which is defective in potassium transport, is further characterized here using conventional electrophysiology, patch-clamp and radiometric approaches to identify the nature of the potassium transport lesion. Rb+ uptake experiments reveal a reduced uptake in csi52 in both the high- and low-affinity uptake range. Patch-clamp analysis indicates that the activity of the predominant inward rectifying channel observed in wild-type cells is extremely low in root protoplasts isolated from csi52, whereas outward rectifying channel activity is comparable between wild-type and mutant. Rb+ uptake studies show that in both wild-type and csi52 the high-affinity uptake pathway is considerably less sensitive to Cs+ than the low-affinity pathway with K1/2 values for Cs+ of around 1.3 and 0.2 mM, respectively. Furthermore, K+ starvation leads to a larger relative increase in high-affinity K+ uptake in the mutant than the wild-type. The results demonstrate the Cs+ sensitivity of each individual uptake pathway is comparable in wild-type and csi52 but the high-affinity pathway is less Cs+ sensitive (in both wild-type and csi52). Therefore, the larger shift toward high-affinity uptake in the mutant compared with the wild-type under K+-starvation conditions will endow the mutant with a higher degree of overall Cs+ resistance. The data supply evidence for the hypothesis that the csi52 mutation lies within a gene that regulates the activity of several potassium transport systems and coordinates their relative contribution to overall root K+ uptake.  相似文献   

15.
Su Q  Feng S  An L  Zhang G 《Biotechnology letters》2007,29(12):1959-1963
High-affinity K+ transporters play an important role in K+ absorption of plants. We isolated a HAK gene from Aeluropus littoralis, a graminaceous halophyte. The amino acid sequence of AlHAK showed high homology with HAK transporters obtained from Oryza sativa (82%) and Hordeum vulgare (82%). When expressed in Saccharomyces cereviae WΔ3, AlHAK performed high-affinity K+ uptake with a Km value of 8 μM, and the growth of transformants was dramatically inhibited by 150 mM Rb+ and 150 mM Cs+ but less affected by 300 mM Na+. AlHAK may thus improve the capacity of plants to maintain a high cytosolic K+/Na+ ratio at high salinity.  相似文献   

16.
We describe a strategy to establish cyanobacterial strains with high levels of H2 production that involves the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering. Nostoc sp. PCC 7422 was chosen from 12 other heterocystous strains, because it has the highest nitrogenase activity. We sequenced the uptake hydrogenase (Hup) gene cluster as well as the bidirectional hydrogenase gene cluster from the strain, and constructed a mutant (ΔhupL) by insertional disruption of the hupL gene. The ΔhupL mutant produced H2 at 100 μmoles mg chlorophyll a -1 h-1, a rate three times that of the wild-type. The ΔhupL cells could accumulate H2 to about 29% (v/v) accompanied by O2 evolution in 6 days, under a starting gas phase of Ar + 5% CO2. The presence of 20% O2 in the initial gas phase inhibited H2 accumulation of the ΔhupL cells by less than 20% until day 7.  相似文献   

17.
Anaerobically grown and glycolysing Escherichia coli produced H2 and carried out H+-K+-exchange in two steps, the first of which had the fixed stoichiometry for DCCD-sensitive fluxes (2H+/K+), and the second one had a variable stoichiometry for DCCD-sensitive fluxes. H2 production and the 2H+/K+-exchange were lost in the ΔfdhF or ΔhycA-H mutant. In the ΔfdhF mutant, H+-K+-exchange with K m for K+-uptake of 2.3 mM and less K+-gradient between the cytoplasm and the medium were observed. H2 production and H+-K+-exchange with a high K m for K+-uptake were carried out in the uncD mutant; however, both H2 production and H+-K+-exchange were lost in the Δunc or uncE mutant. H2 production was observed in the trkA trkD kdpA mutant. It was displayed in protoplasts with increased membrane permeability when donor or acceptor of reducing equivalents—formate with DTT or NADH respectively—was added. The F0F1 and the TrkA(H) or the F0 and the TrkA(G) had been assumed to form the united supercomplexes, functioning as a H+-K+-pump or antiporter respectively (for review see Bioelectrochem Bioenerg 33:1, 1994). Results allow the proposal that H2 production by FHL has a relationship with the H+-K+-exchange through a H+-K+-pump and via an H+-K+-antiporter. Formate and NADH can serve as a donor and an acceptor of reducing equivalent respectively, for operation of such supercomplexes. Received: 12 December 1996 / Accepted: 19 March 1997  相似文献   

18.
Pool-labeling experiments with 2-deoxyglucose in derepressed cells of the yeastSaccharomyces cerevisiae confirmed the previously reported results pointing to the possible existence of transport-associated phosphorylation of sugar. In yeast mutants containing a disruption or an inactivating point mutation in thesnf3 gene, which codes for the high-affinity glucose carrier, no evidence for transport-associated phosphorylation of 2-deoxyglucose was observed. If transport-associated phosphorylation in yeast exists, it is apparently not mediated by the low-affinity glucose carrier. Mediation by the high-affinity carrier would fit with the known requirement of an active kinase for high-affinity sugar transport. A mixed type of uptake in cells having both carriers would explain many of the problems associated with the 2-deoxyglucose pool-labeling experiments. Since mutants that have only low-affinity glucose transport are not deficient in the glucose-induced RAS-mediated cAMP signal, transport-associated phosphorylation of glucose is not required for or involved in the induction of the signal. The yeastfdp mutant, which dies on media containing fermentable sugars because of overaccumulation of sugar phosphates, also did not show any evidence for the existence of transport-associated phosphorylation. The same was true for the double mutantfdp snf3. The latter also showed the typicalfdp phenotype, indicative that the lethality on media containing fermentable sugar is owing to aberrant regulation of low-affinity transport. The high protein kinase activity in thefdp mutant does not appear to be responsible for the absence of evidence for transport-associated phosphorylation, because another mutant with high protein kinase activity, thebcy mutant, displayed normal transport behavior.  相似文献   

19.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

20.
Bacteria accumulate high amounts of potassium in the cytoplasm. For studying transport of K+ (with86Rb as a marker) in bacteria (Staphylococcus aureus 17810S), the cells were depleted of the internal K+ pool by a DNP treatment. Kinetics and energetics of86Rb transport was assayed with glucose as an exogenous energy source. It was shown that86Rb uptake proceededvia a low affinity K+ transport system with an apparent,K m of 2.3 mmol/L Rb+. Studies with the lipophilic cation TPP+ (tetraphenylphosphonium), the protonophore CCCP (carbonyl cyanide 3-chlorophenylhydrazone) and inhibitors (HQNO-2-heptyl-4-hydroxyquinoline N-oxide; iodoacetate) indicated that86Rb transport was driven by Δψ (membrane potential) generatedvia the respiratory chain. The effect of Cd2+ on86Rb transport was assayed with two energy donors—glucose andL-lactate. It was found that Cd2+ strongly inhibited Δψ-dependent86Kb transport energized by cadmium-sensitive glucose oxidation, but was not toxic when cadmium-insensitivel-lactate was used as an energy source. The mechanism of these differential, substrate-dependent effects of Cd2+ on86Rb transport is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号