首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrolysis of soluble starch by glucoamylase and β-amylase was investigated as a model reaction in an aqueous two-phase system consisting of polyethylene glycol (PEG) and dextran (DEX). Changes in glucose concentration observed in the batch reaction experiments with glucoamylase were almost identical for the aqueous two-phase and pure water systems, showing that the enzymic reactions investigated were not influenced by the presence of PEG and DEX. The partition of β-amylase into the DEX phase was insufficient compared to that of glucoamylase. Hence, the former enzyme was crosslinked with glutaraldehyde to increase its apparent molecular weight and, as a consequence, the partition coefficient, defined as the concentration ratio of the component partitioned into the PEG phase to that into the DEX phase, was decreased to 17% of that of the original enzyme. In the operation in which the enzyme and substrate are partitioned selectively into the DEX phase and allowed to react there while the product, thus transferring to the PEG phase, is recovered, the aqueous two-phase system with a smaller partition coefficient provided longer operational stability.  相似文献   

2.
A new type of polymer, starch-modified by acrylamide, has been developed for application in aqueous two-phase systems (ATPS) for protein separation. Partial hydrolysis and acrylamide modification of starch to different degrees make it suitable for forming ATPS with poly(ethylene glycol) in a moderate concentration range. The potential of the polymer to form ATPS with the thermoprecipitating copolymer of 1-vinylimidazole with N-vinylcaprolactam (poly-VI/VCL) has been evaluated. The thermoprecipitation properties of poly-VI/VCL and Cu(II)-loaded poly-VI/VCL have been studied for application in metal affinity partitioning. The formation of ATPS with Cu(II)-loaded thermoprecipitating copolymer was critically achieved for poly-VI/VCL (10/90) copolymer in under-loaded metal concentrations. With the Cu(II)-loaded copolymer, poly-VI/VCL in the top phase and modified starch in the bottom phase, the ATPS formed was used for the purification of alpha-amylase inhibitor from wheat meal. The protein partitioned in the top phase and phase-separated polymer-protein complex could be precipitated by salt. The protein inhibitor was recovered with a yield of 75%.  相似文献   

3.
Integration of bioconversion and the first step(s) of down stream processing can be used as a means to increase the productivity of bioprocesses. This integration also gives the possibility to run the bioconversion in a continuous mode. We demonstrate the use of an aqueous two-phase system in combination with ultrafiltration to accomplish this. Conversion of native starch to glucose by alpha-amylase and glucoamylase was carried out in an aqueous two-phase system in connection with a membrane filtration unit. In this way, a continuous stream of glucose in buffer solution was obtained; the phase-forming polymers as well as the starch-degrading enzymes were recycled, and clogging of the ultrafiltration membrane was avoided. The process was carried out continuously in a mixer-settler reactor for a period of 8 days. The enzyme activities in the top and bottom phases and in the mixing chamber were monitored intermittently throughout the experiment. The optimum pH, temperature, and ionic strength for the activity of the enzyme mixture were determined. The settling time of phase systems containing varying amounts of PEG, crude dextran, and solid starch was studied. The activity and stability of enzyme mixtures was studied both in buffer medium and in the medium containing the polymers. The enzymes were found to be more active and stable in medium containing polymers than in the buffer solutions.  相似文献   

4.
Cellulose was hydrolyzed in the attrition bioreactor (ABR) with enzyme recycling by employing an aqueous two-phase system (composed of dextran and polyethylene glycol) and an ultrafiltration unit. The ABR combines wet ball milling and enzymatic hydrolysis in one process step. The cellulase enzymes were more stable in the two-phase system than in the normal buffer solution. With the initial substrate concentration (Solka Floe BW200) of 40 g/L and intermittent addition of cellulose, sugar was semicontinuously produced at dilution rates of 0.06 h(-1) and productivities of 2.1 g/L h, which is approximately a 10-fold increase of the previously reported values performed in a regular stirred reactor with an aqueous two-phase system. The conversion of the substrate was 86%.  相似文献   

5.
6.
The partitioning of endo-beta-glucanase, exo-beta-glucanase, and beta-glucosidase from Trichoderma reesei QM 9414 in aqueous two-phase systems has been studied with the object of designing a phase system for continuous bioconversion of cellulose. The partitioning of the enzymes in two-phase systems composed of various water soluble polymeric compounds were studied. Systems based on dextran and polyethylene glycol (PEG) were optimal for one-sidedly partitioning the enzymes to the bottom phase. The influence of polymer molecular weights, polymer concentration, ionic composition of the medium, pH, temperature, and adsorption of the enzymes to cellulose on the enzyme partition coefficients (K) were studied. By combining the effects of polymer molecular weight and adsorption to cellulose, K values could be reduced for endo-beta-glucanase to 0.02 and for beta-glucosidase to 0.005 at 20 degrees C in a phase system of Dextran 40-PEG 40000 in the presence of excess cellulose, At 50 degrees C, K values were increased by a factor of two. In a phase system based on inexpensive crude dextran and PEG, the partition coefficient for endo-beta-glucanase was 0.16 and for beta-glucosidase was 0.14 at 20 degrees C with excess cellulose present.  相似文献   

7.
Partition coefficients in poly(ethylene glycol)/dextran aqueous two-phase systems are reported for mixed-casein and its components, alpha, beta and kappa casein. Rates of casein proteolysis by alpha-chymotrypsin and by trypsin are reported in single-phase and aqueous two-phase reactor systems. The advantages resulting from selective partitioning of substrates, enzymes, and products are examined in terms of relative volumetric reaction rates.  相似文献   

8.
A model substrate, Solka Floc BW 200, was semicontinuously hydrolyzed in an aqueous two-phase system based on crude dextran and polyethylene glycol over a period of more than 450 h. With an initial concentration of 75 g/L and intermittent addition of cellulose an average concentration of 50 g/L sugar was semicontinuously produced at dilution rates of 0.006-0.012 h(-1). The conversion of substrate varied between 49 and 66%. The enzyme consumption measured as FPU/g reducing sugar (RS) produced could be reduced by a factor two when compared to a batch process since, in the aqueous two phase system investigated, the enzyme could be recycled two times.  相似文献   

9.
The main drawback when using aqueous two-phase systems for macromolecule purification is the high cost of most polymers used. The purification of an enzyme, alcohol dehydrogenase, from a crude extract of Saccharomyces cerevisiae was tested in systems composed of poly(ethylene glycol) and a crude hydroxypropyl starch or Reppal PES 100, a purified fraction of hydroxypropyl starch. Purification factors measured for the enzyme were very similar in both systems (between 0.8 and 1.4 for both systems in the upper phase). However, systems composed of Reppal PES present a greater recovery of enzyme, between 77% and 100% versus 60% and 100%, while systems composed of crude hydroxypropyl starch exhibit a larger Δlog K for the tested ligand, 1.26 versus 0.81.  相似文献   

10.
The effect of the tie-line location (phase volume ratio) on the kinetics of phase separation in batch PEG/salt aqueous two-phase systems (ATPS) has been investigated. PEG/sulphate systems with a stability ratio (sr) of 0.34 and 0.37 and relative tie-line lengths in the range 0.1 to 0.6 for a continuous top phase and in the range 0.03 to 0.15 for a continuous bottom phase were used in the batch studies. A continuous settler was designed with three different inlet geometries. Phase separation is much faster when the bottom phase is continuous and in this case the location on the tie-line and the presence or absence of Bacillus subtilis extract makes little difference. When the top phase is continuous the relative sizes of the phases (phase ratio, R, relative distance on tie-line, rd) has an important effect, the larger the top phase (larger R and rd) the slower the phase separation. The presence of Bacillus extract also makes the operation slower which is more marked at the largest values of R (and rd). At the largest volume ratios (R or rd) three different settling regions have been recognised, a region of coalescence, a region of drops moving to the interphase and a region where drops queue at the interphase to coalesce into the large phase. A modified correlation that takes into account the location on the tie-line and thus volume ratio (R) and relative distance (rd) has been proposed and successfully tested. The behavior of batch and continuous systems in the presence and absence of Bacillus subtilis extract in systems with continuous bottom phase was also studied. The settling velocity was lower in the continuous than in the batch systems, and in both cases the initial rate was lower in the presence of Bacillus extract.  相似文献   

11.
In this paper, an integrated process involving the mixed ionic liquids/water two-phase system (MILWS) is proposed to improve the efficiency for enzymatic hydrolysis of penicillin G. First, hydrophilic [C4mim]BF4 (1-butyl-3-methylimidazolium tetrafluoraborate) and NaH2PO4 salt form an ionic liquids aqueous two-phase system (ILATPS), which could extract penicillin from its fermentation broth efficiently. Second, a hydrophobic [C4mim]PF6 (1-butyl-3-methylimidazolium hexafluoraphosphate) is introduced into the ionic liquids-rich phase of ILATPS containing penicillin and converses it into MILWS. Penicillin is hydrolyzed by penicillin acylase in the water phase of MILWS at pH 5. The byproduct phenylacetic acid (PAA) is partitioned into the ionic liquids mixture phase, while the intended product 6-aminopenicillanic acid (6-APA) is precipitated at this pH. In comparison with a similar butyl acetate/water system (BAWS) at pH 4, MILWS exhibits two advantages. (1) The selectivity between PAA and penicillin is greatly optimized at pH 5 by varying the mole ratio of [C4mim]PF6/[C4mim]BF4 in MILWS, whereas in BAWS the unalterable nature of the organic solvent restricts the optimized pH for maximum selectivity between PAA and penicillin at pH 4. (2) The pH for 6-APA precipitation in BAWS is 4, whereas it shifts to pH 5 in MILWS due to the complexation between negatively charged 6-APA and the cationic surface of the ionic liquids micelle. As a result, the removal of the two products from the enzyme sphere at relatively high pH is permitted in MILWS, which is beneficial for enzymatic activity and stability in comparison with the acidic pH 4 environment in BAWS.  相似文献   

12.
《Process Biochemistry》2010,45(12):1928-1936
Recycling aqueous two-phase systems (ATPS) are hopeful application techniques in bioseparation and biocatalysis engineering areas. In this study, two novel light-sensitive and reversible water-soluble copolymers were synthesized and used in recycling ATPS. Polymer PNBAC was polymerized by using N-isopropylacrylamide (NIPA), n-butylmethacrylate (BMA), acrylic acid (AA) and chlorophyllin sodium copper salt (CHL) as monomers. Copolymer PNDBC was synthesized by NIPA, 2-(dimethylamino) ethylmethacrylate (DMAEMA), BMA and CHL as monomers. The synthesis yields of two copolymers are 66.9% and 77.2%, respectively. It can be calculated from 1H NMR graph that the molar ratios of monomers in PNBAC (NIPA:BMA:AA:CHL) and PNDBC (NIPA:DMAEMA:BMA:CHL) was 82:4:1:10 and 16:4:3:1, respectively. They could be precipitated by laser irradiation in 488 nm with the least light density of 1.70 × 105 W/m2. The precipitate energy is 1.79 kJ and 3.52 kJ/g, respectively. Five batches of average recoveries of two copolymers in the ATPS are 96.6% and 97.4%. BSA and l-phenylalanine were partitioned in the novel PNDBC–PNBAC ATPS, and their partition coefficients were 2.1 and 0.52. By applying this ATPS to partition of penicillin, the best partition coefficient K is 4.25.  相似文献   

13.
Benzoyl dextran with a degree of substitution of 0.18 was synthesized by reacting dextran T500 with benzoyl chloride. A new type of aqueous two-phase system composed of benzoyl dextran as bottom phase polymer and the random copolymer of ethylene oxide and propylene oxide (Ucon 50-HB-5100) as top phase polymer has been formed. The phase diagram for the system Ucon 50-HB-5100-benzoyl dextran with a degree of substitution of 0.18 was determined at room temperature. This two-phase system has been used to purify 3-phosphoglycerate kinase from bakers' yeast. The top-phase polymer (Ucon) can be separated from target enzyme by increasing the temperature. The bottom-phase polymer (benzyol dextran) could be recovered by addition of salt. Yeast homogenate was partitioned in a primary Ucon 50-HB-5100-benzoyl dextran aqueous two-phase system. After phase separation the top phase was removed and temperature-induced phase separation was used for formation of a water phase and a Ucon-rich phase. The benzoyl dextran-enriched bottom phase from the primary system was diluted, and the polymer was separated from water by addition of Na2SO4.  相似文献   

14.
The effect of a drop coalescer on phase separation in a PEG/salt aqueous two-phase system (ATPS) in the absence and presence of protein has been investigated. Raschig rings of ceramic, PTFE and glass were used as a drop coalescer in order to separate the mixture into two phases. Among the three materials PTFE is the most effective in coalescing the dispersed drops, with the throughput with PTFE being twice that without the coalescer. Random packing gives good results for phase separation. Two types of fiber mesh coated with PTFE were also used as drop coalescers, one in a spirally folded form and the other in a three-dimensional lattice-form. Throughput in the PEG/salt system with the three-dimensional lattice-form is 1.2 times as high as that with the spirally folded form. Throughput with the coalescer formed by compiling PTFE Raschig rings and fiber mesh in lattice form is 1.6 and 1.2 times as high as the case of separate use of the fiber mesh and the PTFE Raschig rings, respectively. The hydrophobic surface of PTFE in the compiled coalescer has no significant effect on the recovery fraction of the protein in ATPS.  相似文献   

15.
The effectiveness of thermoseparating polymer-based aqueous two-phase systems (ATPS) in the enzymatic hydrolysis of starch was investigated. In this work, the phase diagrams of PEO-PPO-2500/ammonium sulfate and PEO-PPO-2500/magnesium sulfate systems were determined at 25 degrees C. The partition behavior of pure alpha-amylase and amyloglucosidase in four ATPS, namely, PEO-PPO/(NH(4))(2)SO(4), PEO-PPO/MgSO(4), polyethylene glycol (PEG)/(NH(4))(2)SO(4), and PEG/MgSO(4), was evaluated. The effects of phase-forming component concentrations on the enzyme activity and partitioning were assessed. Partitioning of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii was also investigated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. The PEO-PPO-2500/MgSO(4) system was extremely attractive for starch hydrolysis. Polymer-based starch hydrolysis experiments containing PEO-PPO-2500/MgSO(4) indicated that the use of ATPS had a significant effect on soluble starch hydrolysis. Batch starch hydrolysis experiments with PEO-PPO/salt two-phase systems resulted in higher production of maltose or glucose and exhibited remarkably faster hydrolysis. A 22% gain in maltose yield was obtained as a result of the increased productivity. This work is the first reported application of thermoseparating polymer ATPS in the processing of starches. These results reveal the potential for thermoseparating polymer-enhanced extractive bioconversion of starch as a practical technology.  相似文献   

16.
The conversion of benzylpenicillin (BP) to 6-aminopenicillanic acid (6-APA) using penicillin acylase (penicillin amidohydrolase, EC 3.5.1.11) has been studied in aqueous two-phase systems. In a system composed of 8.9% (w/w) PEG 20000/7.6% (w/w) potassium phosphate the enzyme was almost completely partitioned to the bottom phase (K < 0.01), which allowed repeated batch conversions, recirculating the enzyme several times. The initial specific productivities were 0.31–1.47 μmol 6-APA mg protein?1 min?1 in repeated conversions over five steps. The yield obtained from the top phase was 0.47–0.71 mol 6-APA mol BP?1. The results are discussed in relation to recirculating the enzyme by immobilizing it to a solid matrix. Despite the high phosphate concentration in the bottom phase the system needs to be titrated in order for the reaction to proceed. Titration of the top phase alone protected the enzyme from denaturation by strong alkali used for the titration.  相似文献   

17.
Partitioning in aqueous two-phase systems: recent results   总被引:4,自引:0,他引:4  
  相似文献   

18.
Partitioning in aqueous two-phase systems: an overview   总被引:2,自引:0,他引:2  
  相似文献   

19.
The kinetics of phase separation in aqueous two-phase systems have been investigated as a function of the physical properties of the system. Two distinct situations for the settling velocities were found, one in which the light, organic-rich (PEG) phase is continuous and the other in which the heavier, salt-rich (phosphate) phase is continuous. The settling rate of a particular system is a crucial parameter for equipment design, and it was studied as a function of measured viscosity and density of each of the phases as well as the interfacial tension between the phases. Interfacial tension increases with increasing tie line length. A correlation that describes the rate of phase separation was investigated. This correlation, which is a function of the system parameters mentioned above, described the behavior of the system successfully. Different values of the parameters in the correlation were fitted for bottom-phase-continuous and top-phase-continuous systems. These parameters showed that density and viscosity play a role in the rate of separation in both top continuous- and bottom continuous-phase regions but are more dominant in the continuous top-phase region. The composition of the two-phase system was characterized by the tie line length. The rate of separation increased with increasing tie line length in both cases but at a faster rate when the bottom (less viscous) phase was the continuous phase. These results show that working in a continuous bottom-phase region is advantageous to ensure fast separation.  相似文献   

20.
A general model for the phase behavior of polymer-polymer aqueous two-phase systems containing small amounts of added inorganic salts has been developed from statistical thermodynamics. The model is based on the solution theory of Hill and new electrolyte solution model based on Fluctuation Solution Theory. It includes the effect of polymer molecular weight with scaling expressions from the Renormalization Group theory of polymer solutions. The model has been used to calculate the phase diagram and the partitioning of salt for an aqueous two-phase system containing polyethylene glycol (MW = 8000) and dextran (MW = 28,700) with 0.1 mole/kg of added Na2SO4. The calculations have been compared to experimental results with good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号