首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The role of cyclic AMP in the stimulation of corticotropin (ACTH) release by corticotropin-releasing factor (CRF), angiotensin II (AII), vasopressin (VP), and norepinephrine (NE) was examined in cultured rat anterior pituitary cells. Synthetic CRF rapidly stimulated cyclic AMP production, from 4- to 6-fold in 3 min to a maximum of 10- to 15-fold at 30 min. Stimulation of ACTH release by increasing concentrations of CRF was accompanied by a parallel increase in cyclic AMP formation, with ED50 values of 0.5 and 1.3 nM CRF for ACTH and cyclic AMP, respectively. A good correlation between cyclic AMP formation and ACTH release was also found when pituitary cells were incubated with the synthetic CRF(15-41) fragment, which displayed full agonist activity on both cyclic AMP and ACTH release with about 0.1% of the potency of the intact peptide. In contrast, the CRF(21-41) and CRF(36-41) fragments were completely inactive. The other regulators were less effective stimuli of ACTH release and caused either no change in cyclic AMP (AII and VP) or a 50% decrease in cyclic AMP (NE). Addition of the phosphodiesterase inhibitor, methylisobutylxanthine, increased the sensitivity of the ACTH response to CRF but did not change the responses to AII, VP, and NE. In pituitary membranes, adenylate cyclase activity was stimulated by CRF in a dose-dependent manner with ED50 of 0.28 nM, indicating that the CRF-induced elevation of cyclic AMP production in intact pituitary cells is due to increased cyclic AMP biosynthesis. The intermediate role of cyclic AMP in the stimulation of ACTH release by CRF was further indicated by the dose-related increase in cyclic AMP-dependent protein kinase activity in pituitary cells stimulated by CRF with ED50 of 1.1 nM. These data demonstrate that the action of CRF on ACTH release is mediated by the adenylate cyclase-protein kinase pathway and that the sequence requirement for bioactivity includes the COOH-terminal 27 amino acid residues of the molecule. The other recognized regulators of ACTH release are less effective stimuli than CRF and do not exert their actions on the corticotroph through cyclic AMP-dependent mechanisms.  相似文献   

3.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

4.
The role of protein kinase C (PKC) on vasopressin (VP) action was investigated by inhibition of endogenous PKC using prolonged incubation of the cells with phorbol ester, and by direct measurement of PKC activity in pituitary cells. Preincubation of the cells for 6 h with 100 nM TPA at 37 C resulted in a 90% decrease in total PKC activity. In the PKC-depleted cells, cAMP responses to stimulation with 100 nM CRF for 30 min were normal, but the potentiating effects of VP and PMA on CRF-stimulated cAMP production were abolished. The stimulation of ACTH secretion by VP and PMA alone was also abolished in PKC- depleted cells. PKC activity in cytosolic and detergent-solubilized membrane fractions from enriched pituitary corticotrophs obtained by centrifugal elutriation, was directly measured by enzymatic assays and by immunoblotting techniques. Basal PKC activity was higher in the cytosol than in the membranes (8.43 +/- 0.47 and 1.93 +/- 0.11 pmol 32P incorporated/10 min, respectively). After incubation of the cells with VP for 15 min or [3H] phorbol-12-myristate-13-acetate (PMA) for 30 min, PKC activity in cytosol was decreased by 40% and 89%, respectively, while the activity in the membrane was increased by 138% and 405%, respectively. Such VP- and PMA-induced translocation of PKC was also observed when the enzyme content in the cytosol and the membranes was measured by immunoblotting using a specific anti-PKC antibody and [125I]protein A. Autoradiographic analysis of immunoblots revealed an 80 kilodalton band characteristic of PKC, with OD higher in the cytosolic than in the membrane fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Cell culture of human pituitary tissue has been used to diagnose a patient with Cushing's syndrome due to ectopic secretion of corticotrophin-releasing factor (CRF; case 1) and a case of acromegaly associated with ectopic secretion of a growth-hormone releasing factor (GRF; case 2). In both patients a pituitary tumour was not detected. Case 1 had a small cell carcinoma and symptoms of the ectopic ACTH syndrome, but in culture the carcinoma failed to secrete detectable ACTH. However, the culture medium used to maintain this carcinoma in vitro was found to contain a substance which stimulated ACTH secretion by human pituitary corticotrophs in cell culture. Radioimmunoassays and HPLC indicated that this substance had similar elution characteristics to human CRF and cross-reacted with antiserum to ovine CRF. Case 2 was found to have a lung tumour, the removal of which led to regression of her acromegalic symptoms. In culture, this tumour did not secrete GH, but did secrete a GRF. We conclude that the Cushing's syndrome and acromegaly, in cases 1 and 2, respectively, were due to ectopic secretion of CRF and GRF leading to hyperstimulation of the pituitary gland.  相似文献   

6.
Corticotropin-releasing factor (CRF) is a major regulatory peptide in the hypothalamic-pituitary-adrenal (HPA) axis under stress conditions. In response to stress, CRF, produced in the hypothalamic paraventricular nucleus, releases adrenocorticotropic hormone (ACTH) from the anterior pituitary (AP). ACTH in turn stimulates the release of glucocorticoid from the adrenal glands. Glucocorticoid then inhibits hypothalamic production of CRF and pituitary production of ACTH. Mice lacking a functional gene for CRF (CRF KO) showed severe impairment of the HPA axis, indicating that CRF is required for its regulation. We applied oligonucleotide microarray analysis to the AP of CRF KO to identify gene expression induced by CRF. Twenty-four genes showed less than 60% expression in CRF KO compared with normal mice. Real-time PCR analysis revealed that p21-activated kinase 3 (Pak3), prohormone convertase type 1 (PC1), and CRF-binding protein (BP) mRNA expression levels were increased by CRF in AP cells. Both Pak3 and PC1 were also increased by dexamethasone in AP cells, while CRF-BP mRNA levels were reduced. Therefore, both Pak3 and PC1 mRNA levels would be regulated by both CRF and glucocorticoids. Pak3 knockdown inhibited CRF-induced cell viability in AtT-20 cells, suggesting the important role of Pak3 in the proliferation of corticotrophs.  相似文献   

7.
The present study was aimed at investigating whether PACAP stimulates accumulation of cAMP, as well as hormonal secretion of homogeneous populations of pituitary proopiomelanocortin (POMC) cells, namely melanotrophs and AtT-20 corticotrophs. PACAP was shown to enhance cAMP accumulation in a dose-dependent fashion in both cell types (with EC50 values of approx. 10(-10) M) and elicited additive increases of cAMP production with CRF in melanotrophs, but not in corticotrophs. PACAP also stimulated dose-dependently the secretion of alpha-MSH and ACTH, with EC50 concentrations of about 10(-9) M. In melanotrophs, bromocriptine significantly depressed PACAP-induced cAMP formation and blunted by more than 90% stimulated alpha-MSH release. This study shows that (1) pituitary POMC cells did respond to PACAP by enhancing cAMP accumulation and elevating hormone secretion as well; (2) the effect of PACAP was additive with CRF on cAMP production in melanotrophs, but not in corticotrophs, while there was no additivity on peptide output from both cell types; (3) activation of dopamine receptors in melanotrophs dampened both cAMP formation and peptide secretion. These findings are consistent with PACAP playing a possible hypophysiotropic role in the regulation of pituitary POMC cell activity.  相似文献   

8.
To examine the regulation and functional significance of canine pituitary pars intermedia corticotrophs, ACTH and cortisol responses to CRF were studied in healthy dogs before and after treatment with dexamethasone. In addition the effects of the dopamine agonist bromocriptine and the dopamine antagonist pimozide were investigated. In the latter two instances prolactin concentrations were also measured. Finally the pituitaries were studied immunocytochemically for ACTH and alpha-MSH. No response of ACTH or cortisol to bromocriptine was observed. Pimozide caused a slight rise in ACTH levels in some dogs. However, prolactin levels significantly decreased with bromocriptine and increased with pimozide. Injection of synthetic ovine CRF to dogs was followed by sharp increases in ACTH and cortisol values. These responses were obliterated by prior treatment with dexamethasone. In 1 of 4 dogs given dexamethasone before euthanasia, there were few pars distalis cells with ACTH(1-24) immunopositivity, although persistence of ACTH(1-24) reaction was noted within cells of the pars intermedia. The results indicate that none of the CRF-induced ACTH secretion in dogs is derived from pars intermedia corticotrophs. Dosages of bromocriptine and pimozide that clearly alter prolactin secretion do not consistently affect ACTH levels.  相似文献   

9.
Summary Anterior pituitaries of adrenalectomized and sham operated adult rats were dispersed by trypsin and cultured for 4 and 8 days. Adrenalectomy caused a moderate increase in number of corticotrophs in both zero-time cell suspensions and cultures. There was a pronounced elevation of immunoreactive ACTH content in both cells and media and an enhanced secretory response to stimulation of cultures with stalk-median eminence extract containing cortiocotropin releasing (CRF) activity. Some cells identified as corticotrophs by a specific immunostaining incorporated tritiated thymidine into their nuclei suggesting their ability to enter the cell cycle. The relatively smaller increase in number of ACTH cells and the considerably higher ACTH producing capacity of the corticotrophs after adrenalectomy seem to be inconsistent with the quantal response model of hormone secretion recently introduced by Rodbard.  相似文献   

10.
There is increasing evidence that neuropeptide Y (NPY) affects the release of pituitary hormones, including adrenocorticotropic hormone (ACTH). The present study was designed to clarify the mechanism by which NPY activates the hypothalamic-pituitary-adrenal (HPA) axis in the dog. Mongrel dogs were equipped with a chronic cannula allowing intra-third (i.t.v.) or intra-lateral (i.l.v.) cerebroventricular administration. A 1.19 nmol, i.t.v. dose of NPY produced as great an ACTH and cortisol response as did equimolar ovine corticotropin releasing factor (CRF). This action of NPY was dose-dependent and shared by peptide YY (PYY) and pancreatic polypeptide (PP), other members of the PP family peptide. Intravenously (i.v.) administered NPY (1.19-11.9 nmol) was much less potent than i.v. CRF in stimulating ACTH and cortisol secretion. However, i.v. NPY significantly increased plasma ACTH and cortisol concentrations, raising the possibility that NPY may modulate the activity of corticotrophs. We have next investigated the possible relationship between NPY and CRF on the HPA axis. Pretreatment with a novel CRF antagonist, alpha-helical CRF9-41 (130.9 nmol i.t.v. or 261.8 nmol i.v.), partly but significantly attenuated the ACTH and cortisol responses to i.t.v. NPY (1.19 nmol). Furthermore, adding a subthreshold dose of i.t.v. NPY (0.119 nmol) to i.t.v. CRF (1.19 nmol) or i.v. NPY (2.38 nmol) to i.v. CRF (0.595 nmol) resulted in the potentiation of CRF-induced ACTH secretion. These results indicate that NPY may activate the HPA axis in concert with CRF probably at hypothalamic and/or pituitary levels. The present findings that NPY evokes ACTH secretion and potentiates the effectiveness of CRF as a secretagogue, together with high concentrations of NPY in the hypothalamus and pituitary portal blood, suggest that NPY is involved in the multihormonal control of ACTH release.  相似文献   

11.
In the anterior pituitary gland, c-Fos expression is evoked by various stimuli. However, whether c-Fos expression is directly related to the stimulation of anterior pituitary cells by hypothalamic secretagogues is unclear. To confirm whether the reception of hormone-releasing stimuli evokes c-Fos expression in anterior pituitary cells, we have examined c-Fos expression of anterior pituitary glands in rats administered with synthetic corticotrophin-releasing hormone (CRH) intravenously or subjected to restraint stress. Single intravenous administration of CRH increases the number of c-Fos-expressing cells, and this number does not change even if the dose is increased. Double-immunostaining has revealed that most of the c-Fos-expressing cells contain adrenocorticotrophic hormone (ACTH); corticotrophs that do not express c-Fos in response to CRH have also been found. However, restraint stress evokes c-Fos expression in most of the corticotrophs and in a partial population of lactotrophs. These results suggest that c-Fos expression increases in corticotrophs stimulated by ACTH secretagogues, including CRH. Furthermore, we have found restricted numbers of corticotrophs expressing c-Fos in response to CRH. Although the mechanism underlying the different responses to CRH is not apparent, c-Fos is probably a useful immunohistochemical marker for corticotrophs stimulated by ACTH secretagogues. This work was supported by the Jichi Medical University young investigator award.  相似文献   

12.
Iwabuchi M  Oki Y  Yoshimi T 《Life sciences》1999,64(12):1055-1062
Activation of protein kinase C (PKC) stimulates adrenocorticotropin (ACTH) release synergistically in the presence of corticotropin releasing factor (CRF). We examined the effect of a cyclic nucleotide-specific phosphodiesterase inhibitor, 1-isoamyl-3-isobutylxanthine (IIX), on arginine vasopressin (AVP)-induced ACTH release and intracellular cAMP accumulation in normal rat anterior pituitary cells. IIX alone elevated intracellular cAMP accumulation. IIX potentiated AVP-induced ACTH release synergistically without further increase in cAMP accumulation, suggesting that synergistic ACTH release has an alternative mechanism other than the synergistic elevation of intracellular cAMP accumulation which has been reported. Phorbol 12-myristate-13-acetate (PMA) also induced synergistic ACTH release when incubated with IIX. IIX had no additional effect on ACTH response when incubated with maximal dose of CRF, forskolin or 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP). Moreover, the combination of PMA and 8-Br-cAMP produced synergistic ACTH response. In conclusion, the synergistic ACTH release from rat pituitary corticotrophs occurs at least in the presence of directly activating events of PKC and PKA as well as PKC-induced inhibition of phosphodiesterase activity.  相似文献   

13.
B Lutz-Bucher  J M Félix  B Koch 《Peptides》1990,11(6):1183-1189
The present study was aimed at investigating the effect of protein kinase C (PKC) activation on CRF receptor function of proopiomelanocortin (POMC) cells in culture. Incubation of tissues with the phorbol ester PMA selectively potentiated corticotropin-releasing factor (CRF)-stimulated ACTH secretion and cyclic AMP formation of anterior pituitary (AP) cells, while, in sharp contrast, it failed to similarly affect intermediate pituitary (IP) cells and AtT-20 corticotrophs exposed to CRF. Unexpectedly, however, long-term treatment of cultures with PMA, which depletes cell stores of PKC, resulted in a similar dramatic attenuation of stimulated peptide release from both corticotrophs and melanotrophs, while being without significant effect on cyclic AMP production. Exposure of cells to PMA did not change either basal or CRF-enhanced levels of POMC mRNA. We conclude that activation of PKC fails to synergize with CRF-mediated signalling in IP and AtT-20 cells, although optimal CRF receptor expression requires the presence of a functional kinase C pathway, thus suggesting cross-talks between both messenger systems.  相似文献   

14.
B A Eipper  R E Mains 《Biochemistry》1975,14(17):3836-3844
Denaturing solvents have been used to determine the molecular weight of the adrenocorticotropic hormone (ACTH) activity in mouse pituitary, in an ACTH secreting mouse pituitary tumor cell line (AtT-20/D-16v), and in the tissue culture medium from the pituitary tumor cells. ACTH activity was quantitated by radioimmunoassay and by bioassay. It is possible to utilize guanidine hydrochloride or sodium dodecyl sulfate in characterizing the multiple forms of ACTH because treatment of porcine ACTH (the 39 amino acid polypeptide form of ACTH, alpha(1-39)), pituitary extracts, tumor cell extracts, and tumor cell tissue culture medium with these denaturants does not diminish the immunological ACTH activity. Based on gel filtration in the presence of guanidine hydrocholoride, extracts of the pituitary tumor cells and the mouse pituitary contain three distinct molecular weight classes of ACTH activity. The major form of ACTH has a molecular weight similar to alpha(1-39) (molecular weight 4000-5500), but there are significant amounts of two higher molecular weight forms of ACTH: molecular weight 6500-9000 and molecular weight 20,000-30,000. The 6500-9000 molecular weight form of ACTH is the major form of ACTH in the tissue culture medium; there is no peak of alpha(1-39) size ACTH in the medium. In the radioimmunoasay all three forms of ACTH generate competitive binding curves parallel to that of porcine alpha(1-39); in the bioassay (stimulation of steroidogenesis in a mouse adrenal tumor cell line) the dose response curve for each of the molecular forms of ACTH is parallel to that for porcine alpha(1-39).  相似文献   

15.
In cultured rat anterior pituitary cells, the agonist [Asu1,6, Arg8]vasopressin (AVP-A) increased by 1.5-fold 32Pi incorporation into phosphatidic acid (PA), as early as 15 s after its addition. Increased phosphatidylinositol (PI) labeling became significant 4 min after AVP-A addition. Dose-response measurements with AVP-A showed ED50 values of 76 and 62 nM for PA and PI labeling, respectively. Peptide corticotropin-releasing factor (CRF) (0.1 microM) did not affect the stimulatory effect of AVP-A on PA and PI labeling. These data suggest that stimulation of PI metabolism in corticotrophs may be one of the early events involved in the stimulation of ACTH release induced by vasopressin.  相似文献   

16.
Corticotrophs were long thought to be a static, homogeneous population of cells that respond positively to hypothalamic stimulation, are inhibited by glucocorticoid feedback and secrete a single biologically active peptide, ACTH(1-39). Our current understanding is that this is an oversimplification and corticotrophs are a dynamic and more complex group of cells. The biosynthetic precursors of ACTH and other cleavage products of proopiomelanocortin (POMC) have been found to be secreted by anterior pituitary cells, to circulate and to have biological activity. POMC and the biosynthetic intermediate, pro-ACTH, exert activity antagonistic to ACTH(1-39) on glucocorticoid secretion by adrenal cells, and other derivatives of POMC are mitogenic to adrenocortical cells. In terms of responses to hypothalamic and peripheral factors, corticotrophs are functionally heterogeneous. This is reflected in the sensitivity of individual subtypes of corticotrophs to CRH, vasopressin and glucocorticoids. There is a functional plasticity amongst the various types of corticotrophs. During gestation, in fetal sheep, changes occur in the overall ACTH-secretory responses to CRH relative to vasopressin, the proportions of total corticotrophs that respond to the respective peptides and the average secretory response of individual cells. Corticotrophs also respond to locally produced pituitary factors. Local actions of leukaemia inhibitory factor are demonstrated by the effects of immunoneutralization of the peptide in pituitary cells. Urocortin and preproTRH(178-199) are locally produced peptides with potent stimulatory and inhibitory actions on corticotrophs, respectively. The specific roles of these peptides are under investigation.  相似文献   

17.
The hypothalamic regulation of ACTH secretion has been reviewed. Recent biochemical investigations on corticotropin-releasing factor (CRF) suggest that CRF is present in the hypothalamus under two or more different molecular weight forms, their structure being not elucidated yet. Vasopressin has a CRF-like activity. However, contradictory results have been reported on the role of AVP as a physiological CRF. The synthesis of CRF appears to occur in a large hypothalamic area outside the median eminence. CRF-carrying fibers are thought to pass through the lateral retrochiasmatic area and project on the hypophysial portal vessels at the junction between the pituitary stalk and the median eminence. Conflicting data have been published on the influence of monoamines on ACTH secretion. In the dog, ACTH release is inhibited by the alpha-adrenergic receptors, this effect being not as clearly demonstrated in other species. The stimulation of nicotinic and muscarinic receptors followed by increased ACTH secretion. Glucocorticoids appear to lower ACTH secretion through an action at both the hypothalamic and pituitary levels.  相似文献   

18.
The secretion of ACTH by corticotrophs in the anterior lobe of the rat pituitary gland is under the stimulatory influence of at least three receptors, namely that for peptidic CRF (corticotropin-releasing factor), vasopressin and alpha 1-adrenergic agents. CRF is a potent stimulator of cyclic AMP accumulation as well as adenylate cyclase activity in the rat adenohypophysis, thus suggesting an important role of cyclic AMP as mediator of CRF action on ACTH secretion. Vasopressin causes a 2-fold increase of the stimulatory effect of CRF on ACTH release in rat anterior pituitary cells in culture. The potentiating effects of vasopressin on CRF-induced ACTH release are accompanied by parallel changes of intracellular cyclic AMP levels. Vasopressin, while having no effect on basal cyclic AMP levels, causes a 2-fold increase in CRF-induced cyclic AMP accumulation without affecting the ED50 value of CRF action. ACTH secretion is also stimulated by a typical alpha 1-adrenergic receptor. Epinephrine causes a marked stimulation of ACTH release which is additive to that of CRF. Epinephrine, in analogy with vasopressin, although having no effect alone on basal cyclic AMP levels, causes a marked potentiation of CRF-induced cyclic AMP accumulation. Glucocorticoids cause a near-complete inhibition of epinephrine-induced ACTH secretion within 4 h with the following order of ED50 values: triamcinolone acetonide (0.2 nM) greater than dexamethasone (1.0 nM) much greater than cortisol (11 nM) greater than corticosterone (22 nM). Similar effects are observed for CRF- and vasopressin-induced ACTH release. Although the activity of the pituitary-adrenocortical axis in the rat is highly dependent upon sex steroids, 17 beta-estradiol, 5 alpha-dihydrotestosterone and the pure progestin R5020 have no detectable effect on basal or epinephrine-induced ACTH release, thus illustrating the high degree of specificity of glucocorticoids in their feedback control of ACTH secretion. Moreover, glucocorticoids have no effect on CRF-induced cyclic AMP accumulation, thus indicating that their inhibitory effect is exerted at a step following cyclic AMP accumulation.  相似文献   

19.
The effects of intravenous or intraventricular injection of synthetic ovine corticotrophin-releasing factor (oCRF) on plasma levels of anterior pituitary hormones were studied in conscious, ovariectomized (OVX) female rats and compared with the actions of the peptide on dispersed anterior pituitary cells from OVX female rats incubated in the presence of CRF. Third ventricular injection of oCRF in freely moving rats caused a significant increase in plasma levels of ACTH in a dose-related manner with a minimal effective dose of less than 0.5 micrograms (0.1 nmol). The effect was observable at 5 min after injection and persisted for the 60 min duration of the experiment. In contrast, growth hormone levels were significantly depressed within 15 min with a minimal effective intraventricular dose of 0.5 micrograms. The suppression persisted for the duration of the experiment but there was no additional effect of the higher dose of 5 micrograms. Plasma LH levels were also lowered by the highest dose of 5 micrograms (1.0 nmol) of oCRF, with the first significant lowering at 30 min. Lower doses had no effect on plasma LH. Plasma TSH levels were not significantly altered. Control injections of the 0.9% NaCl diluent were without effect on the levels of any of the hormones. Intravenous injection of similar doses of oCRF had no effect on plasma levels of GH or LH. The ACTH-releasing action of the oCRF preparation was confirmed by in vitro incubation of the peptide with dispersed anterior pituitary cells for 2 h. A dose-related release of ACTH occurred in doses ranging from 0.1-10 nM, but there were no effects on the release of the other anterior pituitary hormones. The results suggest that oCRF may act within the hypothalamus to suppress the release of GH and to a lesser extent LH. The stimulation of ACTH release following intraventricular CRF is presumably related to its uptake by portal blood vessels with delivery to the pituitary and stimulation of the corticotrophs.  相似文献   

20.
Radioimmunocytochemistry (RICH) was applied to detect corticotrophs in adult rat pituitaries and 8-day-old anterior pituitary monolayers by incubating sections and cultures with 125I-ACTH-anti ACTH immune complexes. After incubations autoradiography was made. In comparison, "conventional" immunostaining was carried out on adjacent sections and parallel cultures. It has been established that RICH is suitable for detection of corticotrophs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号