首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The role of substance P in the regulation of secretion from sustentacular cells, Bowman's glands and deep glands in the amphibian olfactory mucosa was investigated using immunohistochemical, electrophysiological, and pharmacological methods. Substance P-like immunoreactive varicose fibers extended through the olfactory epithelium, terminating at or near the surface. In addition, immunoreactive varicose fibers innervated Bowman's glands, deep glands, and blood vessels in the lamina propria. Innervation of Bowman's gland was sparse, with fibers terminating on basal acinar cell membranes; deep gland innervation was abundant, with fibers often extending between acinar cells almost to the lumen. Stimulation of the ophthalmic branch of the trigeminal nerve resulted in slow potentials recorded at the surface of the olfactory epithelium. When the olfactory mucosae from trigeminal-stimulated animals were examined histologically, morphological signs of secretory activity were observed, suggesting that substance P was released from the trigeminal nerve terminals. Topical application of 10-5 to 10-3 mol substance P resulted in morphological signs of secretion that were very similar to those seen as a result of trigeminal stimulation. Thus, substance P released from trigeminal fibers may modulate secretory activity within the olfactory mucosa.  相似文献   

2.
Summary The functional morphology of the mammiliform penial glands ofLittorina saxatilis has been investigated with both light and electron microscopy. These penial glands line the ventral edge of the penis and orient with the female mantle during copulation. Secretions are released from the penial glands to this interface where they probably function in adhesion. The penial gland secretions comprise heterogeneous granules as well as apocrine and mucous secretions. The heterogeneous granules are produced in separate multicellular glands arranged in a series of lobes that lie outside a thick smooth muscle layer enclosing the lumen. Each glandular lobe is surrounded by a thin layer of smooth muscle. Secretions are transported in individual cellular processes that pass through the thick smooth muscle layer and empty into the lumen. Surrounding the lumen is an epithelium containing apocrine secretory cells as well as occasional goblet-type, mucous cells. The combined action of the muscles forces secretions out of the lumen through the penial papilla, onto the external surface of the mammiliform penial gland. Longitudinal muscles extend into the penial papilla enabling its protrusion or retraction. Retraction of the penial papilla following secretion release is thought to create negative pressure beneath the penial gland producing suction adhesion. The visco-elastic properties of the penial gland secretion are qualitatively different from foot mucus and may represent specialization to an adhesive function.  相似文献   

3.
The Dufour gland is crucially involved in main aspects of the parasite habit of the slave-making ant Polyergus rufescens, i.e. slave-raids and host colony usurpation. Workers use chemicals from this gland as recruitment signals during raid organization, while newly-mated queens use its secretion to appease residents during host nest invasion. Here, we report a comparison of the general morphology and fine structure of the Dufour gland in the female castes of P. rufescens: queens, ergatogynes (intermediate forms), and workers. The analysis clearly shows the link between gland structure and its behavioural role in queens and workers. In particular, queens present a hypertrophied gland with an extended lumen and a thin epithelium no more active in secretory function. This is consistent with the fact that usurper queens use the Dufour gland contents only during the short phase of host nest penetration. Contrary to adult queens, the cytoplasmic organization of the Dufour gland epithelium of raiders is typical for a tissue with secretory activity (abundance of mitochondria, free ribosomes, strands of smooth endoplasmic reticulum and a Golgi apparatus). This is consistent with the continuous raiding activity performed by workers throughout their adult life. The biology of ergatogynes is still an enigmatic matter. Their Dufour gland is intermediate in shape and size between that of queens and workers. It presents a fairly thick epithelium with features that are typical of a quite active secretory tissue.  相似文献   

4.
The structure and secretory activity of the accessory salivary gland in two species of Conus were examined using routine and histochemical techniques of light, scanning and transmission electron microscopy. The composite layers of the accessory salivary gland of Conus are a luminal epithelium, fibromuscular layer, submuscular layer, and a capsule. In C. flavidus and C. vexillum, the luminal epithelium is formed by epitheliocytes and cytoplasmic processes extending from the secretory cells, whose perikarya form the submuscular layer. The processes carry secretory cell products (chiefly Golgi-derived glycoprotein) across the fibromuscular layer and terminate between epitheliocytes (at the bases of the secretory canaliculi) or beyond the surface of the epithelial cells. Conus vexillum is distinguished from C. flavidus by its high content of lipofuscin. Epitheliocytes are the only microvillated cells in the accessory salivary gland of Conus. In C. flavidus, epitheliocytes extrude secretory granules, various types of cytoplasmic blebs and clear vesicles by apocrine “pinching off”. Clear vesicles are shed from the tips of microvilli. The luminal epithelial cells of C. vexillum similarly egest clear vesicles, but normally undergo additional holocrine secretion to release lipofuscin. The secretions of epitheliocytes appear to be major products of the accessory salivary gland: consideration of secretory activities by both epitheliocytes and secretory cells will therefore be necessary when directly investigating accessory salivary gland function in Conus.  相似文献   

5.
Silk spinning is widely-spread in trombidiform mites, yet scarse information is available on the morphology of their silk glands. Thus this study describes the fine structure of the prosomal silk glands in a small parasitic mite, Ornithocheyletia sp. (Cheyletidae). These are paired acinous glands incorporated into the podocephalic system, as typical of the order. Combined secretion of the coxal and silk glands is released at the tip of the gnathosoma. Data obtained show Ornithocheyletia silk gland belonging to the class 3 arthropod exocrine gland. Each gland is composed of seven pyramidal secretory cells and one ring-folded intercalary cell, rich in microtubules. The fine structure of the secretory cells points to intensive protein synthesis resulted in the presence of abundant uniform secretory granules. Fibrous content of the granules is always subdivided into several zones of two electron densities. The granules periodically discharge into the acinar cavity by means of exocytosis. The intercalary cell extends from the base of the excretory duct and contributes the wall of the acinar cavity encircling the apical margins of the secretory cells. The distal apical surface of the intercalary cell is covered with a thin cuticle resembling that of the corresponding cells in some acarine and myriapod glands. Axon endings form regular synaptic structures on the body of the intercalary cell implying nerve regulation of the gland activity.  相似文献   

6.
Timema is the most basal genus of Phasmatodea and the sister group to the remaining stick and leaf-insects (Euphasmatodea). An autapomorphy of all phasmids is the paired prothoracic exocrine defence glands. In this study, the anatomy and innervation of the defence glands in Timema petita and Timema chumash are described and compared with the data on Euphasmatodea. In all phasmids, the glands consist of a cuticular epithelium, a secretory epithelium and muscular fibres that compress the lumen. In Timematodea, the muscular part of the gland is less developed than in Euphasmatodea and the ejection of the defence secretion depends on the dorsal longitudinal neck muscles. On the neuroanatomical level, Timema petita and Timema chumash lack neurons that are involved in the independent contraction of the gland in euphasmids. In both studied species of Timema, neck muscles play an active role in the gland function which is not observed in any other phasmid. Considering the basal position of this genus, this supports the hypothesis that in euphasmids, the muscular part of the gland evolved from the dorsal longitudinal neck muscles. Additionally, the same nerves that innervate the dorsal longitudinal neck muscles in all Polyneoptera also innervate the defence glands in phasmids.  相似文献   

7.
We investigated the female reproductive system of Platygaster diplosisae (Hymenoptera: Platygastridae) and Aprostocetus procerae (= Tetrastichus pachydiplosisae) (Hymenoptera: Eulophidae), two parasitoids associated with the African rice gall midge, Orseolia oryzivora (Diptera: Cecidomyiidae). Both optical and electron microscopy were used. The female reproductive system of P. diplosisae includes two large ovaries of the meristic polytrophic‐type, each composed of several tens of ovarioles. The system includes also a venomous gland that extends to a common oviduct. This gland had a filiform secretory portion, in which the epithelium was thin and surrounded a common evacuation canal. The secretory cells secrete into a large reservoir. Parasitism due to P. diplosisae is gregarious. The female reproductive system of A. procerae includes two ovaries of the meristic polytrophic‐type, and each ovary has a few ovarioles. Each ovariole includes one or two oocytes, which can be seen in the vitellarium. Two accessory glands, which extend to the oviduct, are also visible. The secretory epithelium of the accessory gland is made up of a dense network of secretory cells surrounded by muscle fibers. Females of A. procerae pierce the tissues of the gall and probably deposit one egg on or close to the pupa of the midge. Aprostocetus procerae is a solitary parasitoid of the midge. The two parasitoids exploit the same host at different developmental stages. These findings improve our knowledge of the reproductive biology of these two parasitoids associated with the African rice gall midge, an important pest in Africa.  相似文献   

8.
9.
Nematode amphids are a pair of lateral cephalic sense organs, each comprising a group of sensory endings terminating in a cuticle-lined pit. In Syngamus trachea, a parasite of birds, each amphid is surrounded by two non-nervous supporting elements, a large gland cell basally and a smaller supporting cell anteriorly. The amphidial glands display high levels of secretory activity from five to six days postinfection. Secretory material is discharged through the lumen of the sense organ onto host tissue. The ultrastructure of amphids and amphidial glands has been investigated in newly moulted, immature and mature adults to trace the development of glandular activity and its effect on amphid-amphidial gland relationships. In newly moulted adults, the glands have very low levels of secretory activity and appear to act only as supporting cells to the amphids. As secretory activity increases, the gland cell membrane surrounding the sensory endings is elaborated into a reticulum which probably forms the secretory surface. In mature adults the amphid pit is swollen and filled with secretion; the sensory endings are relegated to the periphery of the lumen. It is suggested that amphidial glands develop from typical supporting cells, but acquire a new role possibly associated with parasite attachment.  相似文献   

10.
This study of the morphology, histology, histochemistry, and ultrastructure of the Harderian gland in Geckos (Squamata, Gekkota) revealed previously unreported variation. The gecko Harderian gland is unlike that of other squamates in that each cell of the secretory epithelium has both lipid and protein secretory granules. Lipid secretion has not been reported previously for the squamate Harderian gland. The structure of the protein granules resembles that described for a scincomorph lizard (Podarcis, Lacertidae). Differences between representatives of the subfamilies Gekkoninae and Diplodactylinae suggest possible phylogenetic constraints in the structure or function of Harderian glands within gekkotan lineages. The structural relationship between the Harderian gland and the lacrimal duct supports previous suggestions of a possible functional link between the Harderian gland and the vomeronasal organ. J Morphol 231:253–259, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Summary The accessory male reproductive glands of the hairy-nosed wombat, Lasiorhinus latifrons, are a prostate and three pairs of Cowper's glands. Component units of all are branched tubular structures of varying epithelial makeup and secretory content. The prostate has the carrotlike shape and three consecutive regions commonly found in marsupials. The regions differ in their tubular histology and histochemistry: all contain secretory globules in glandular lumina. Cowper's glands A and B are histologically identical except for the absence of interstitial mast cells from gland B: gland C is characterized by narrower tubules and larger epithelial cells. Histochemical tests for protein, carbohydrate and iron indicate that glycogen is a major secretory product of the prostate (largely posterior region), iron is also secreted (mainly posterior region) and a small quantity of acid mucin is produced (mainly central region). Glycogen is a feature also of anterior prostatic glandular epithelium and of the capping cells of the urethral transitional epithelium. Cowper's gland A has considerable protein in its secretion, gland B a neutral glycoprotein and gland C a sialomucin: the latter two also exhibit cytoplasmic glycogen in their secretory cells.  相似文献   

12.
The unusual idiosomal glands of a water mite Teutonia cometes (Koch 1837) were examined by means of transmission and scanning electron microscopy as well as on semi-thin sections. One pair of these glands is situated ventrally in the body cavity of the idiosoma. They run posteriorly from the terminal opening (distal end) on epimeres IV and gradually dilate to their proximal blind end. The terminal opening of each gland is armed with the two fine hair-like mechanoreceptive sensilla (‘pre-anal external’ setae). The proximal part of the glands is formed of columnar secretory epithelium with a voluminous central lumen containing a large single ‘globule’ of electron-dense secretory material. The secretory gland cells contain large nuclei and intensively developed rough endoplasmic reticulum. Secretory granules of Golgi origin are scattered throughout the cell volume in small groups and are discharged from the cells into the lumen between the scarce apical microvilli. The distal part of the glands is formed of another cell type that is not secretory. These cells are composed of narrow strips of the cytoplasm leaving the large intracellular vacuoles. A short excretory cuticular duct formed by special excretory duct cells connects the glands with the external medium. At the base of the terminal opening a cuticular funnel strengthens the gland termination. At the apex of this funnel a valve prevents back-flow of the extruded secretion. These glands, as other dermal glands of water mites, are thought to play a protective role and react to external stimuli with the help of the hair-like sensilla.  相似文献   

13.
The paired tubular accessory glands in Haemaphysalis longicornis open at the junction of the cervical and the vestibular parts of vagina via short and narrow ducts. The pseudostratified columnar glandular epithelium covered by the muscle layer consists of both secretory and supporting cells. As feeding proceeds, the secretory cells increase in volume. In ovipositing females, well-developed rough endoplasmic reticulum, the Golgi complex, and membranebound granules that are undergoing exocytosis suggest that the secretory cells are involved in protein synthesis. However, in virgin females that fed 10 days, only small dense granules and no secretion activity were observed. The secretions from the tubular accessory gland may be released into the genital tract during the egg passage through the vagina. However, the supporting cells located between the secretory cells become slender during feeding, cohere to each other at the luminal side, and have a very narrow attachment at the basement membrane. Supporting cells probably help maintain secretory cell shape especially during granular discharge into the lumen. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Mehlis' gland of both Diplozoon paradoxum and Calicotyle kröyeri is composed of two cell types that taper to form ducts opening into the lumen of the ootype. The cells are invested with fibrous interstitial material and form a close structural relationship with surrounding parenchyma. The most prevalent cell type, the S1 cell, is characterized by an extensive GER with narrow cisternae containing a finely granular material, and numerous Golgi stacks involved in the formation of multi-vesicular secretory bodies. In the S2 cells the GER cisternae are greatly distended with a finely filamentous material and the Golgi give rise to dense secretory bodies with a packed fibrous appearance. There are species differences in the fine structure of the secretory bodies and these may reflect differences in the chemical composition of the glands. The ducts of the glands are lined with microtubules and are anchored to the ootype epithelium by septate desmosomes. They convey the secretory products to the ootype where they are released, apparently by exocytosis involving membrane fusion, into the lumen. The ootype is lined by a highly folded cellular epithelium which in D. paradoxum is ciliated. The cells contain profiles of GER and Golgi complexes and produce a third type of secretion which is also discharged into the ootype lumen.  相似文献   

15.
Tarantula venoms are a cocktail of proteins and peptides that have been increasingly studied in recent years. In contrast, less attention has been given to analyzing the structure of the paired cephalic glands that produce the venom. We have used light, electron, and confocal microscopy to study the organization and structure of the venom gland of the Brazilian tarantula Vitalius dubius. The chelicerae are hairy chitinous structures, each with a single curved hollow fang that opens via an orifice on the anterior surface. Internally, each chelicera contains striated muscle fiber bundles that control fang extension and retraction, and a cylindrical conical venom gland surrounded by a thick well-developed layer of obliquely arranged muscle fibers. Light microscopy of longitudinal and transverse sections showed that the gland secretory epithelium consists of a sponge-like network of slender epithelial cell processes with numerous bridges and interconnections that form lacunae containing secretion. This secretory epithelium is supported by a basement membrane containing elastic fibers. The entire epithelial structure of the venom-secreting cells is reinforced by a dense network of F-actin intermediate filaments, as shown by staining with phalloidin. Neural elements (axons and acetylcholinesterase activity) are also associated with the venom gland. Transmission electron microscopy of the epithelium revealed an ultrastructure typical of secretory cells, including abundant rough and smooth endoplasmic reticulum, an extensive Golgi apparatus, and numerous mitochondria.  相似文献   

16.
The defensive glands of Anisomorpha buprestoides produce the terpene toxicant anisomorphal. Each gland consists of a cuticular secretion reservoir surrounded by the secretory epithelium and the musculature which serves to compress the gland and expel the secretion. Two types of cells make up the secretory epithelium: a squamous layer next to the cuticular reservoir and a layer of larger secretory cells responsible for production of the toxicant. The microvilli-laden plasma membrane of each secretory cell is invaginated to form a central cavity. It appears that secretory products pass into the central cavity and then flow out to the gland reservoir via an efferent cuticular ductule contained within the squamous epithelial cell. Histochemical techniques demonstrate lipid reserves, carboxylic esterases, a variety of phosphatases, and an alcohol dehydrogenase, within the secretory cells. It is suggested that the lipid reserves are precursors of the terpenoid toxicant, that a mevalonic kinase has been histochemically demonstrated by the phosphatase test, and that an unusual alcohol dehydrogenase is active in the final steps of toxicant synthesis. The histochemical evidence is consistent with the hypothesis that anisomorphal is produced via the mevalonic acid pathway.  相似文献   

17.
The specialized cell types and two distinct regions of the adult Rhodnius prolixus cement gland develop from a simple pseudostratified epithelial tube during the 20–22 days of the fifth stadium. Feeding initiates the first phase, proliferation. Cells round up and divide tangentially to the lumen. Following the proliferation phase, differentiative mitoses occur and differentiation, resulting in secretory units (consisting of a ductule, gland cell and cuticular lining), ensues in the distal region. Ductule morphogenesis occurs without pseudocilia, thus differing from other insect glands. The complex changes in cell shape and interaction occur during development of the secretory unit. The secretory cell and end-apparatus develop from a double cell unit at the base of elongating ductules. The inner cell produces a complex end-apparatus of epicuticle that mirrors the microvillar pattern and then it degenerates. The ductules are lined by cuticulin and inner epicuticle while the central gland lumen has a layer of endocuticle as well. The epithelium of the proximal region remains simple producing the thick corrugated cuticle characteristic of the adult secretory duct. The mesodermal covering forms a thick longitudinal striated muscle layer that adheres to the epithelium via desmosomes.  相似文献   

18.
We studied the morphological characteristics and seasonal changes of the bulbourethral gland of Eidolon helvum in a typical African tropical environment. Forty-eight bulbourethral glands were examined using gross anatomical, histological, histochemical, and ultrastructural techniques during the early rainy, late rainy, and peak dry seasons. The pear-shaped bilateral bulbourethral glands were located extra-abdominally in the inguinal region. Trabeculae from the capsule divided the parenchyma into numerous lobules of tubuloalveolar glandular acini. The mucosa was covered by a simple columnar epithelium consisting up of principal secretory cells, columnar dense cells and basal cells, which were progressively pronounced during the dry season. The principal cells contained eosinophilic granules, which were PAS positive while the dense cells did not show affinity for the stains. The mean gross weights, acini diameters, and epithelial heights were greater during the rainy season than the dry season. Ultrastructural evaluation showed that the cytoplasm of the principal cells contained well-developed Golgi complexes, rough endoplasmic reticulum, mitochondria, and secretory vesicles of varying electron densities and sizes. The secretory vesicles were numerous during the early rainy season, decreased during the late rainy season and were scanty during the peak dry season. The simple columnar epithelium observed during the rainy season was replaced by an undefined stratified epithelium during the dry season, and this was associated with cellular degenerations and regenerations. In conclusion, E. helvum has a typical mammalian bulbourethral gland, with a unique cell type, the dense cell whose functions are not well-understood. The gland exhibits cyclical seasonal variation in structure and secretory activity; being active during the early rainy season (breeding season), and showing the lowest activity during the dry season (non-breeding season). Glandular epithelial cell renewal occurs during the dry season in preparation for the next breeding season.  相似文献   

19.
Abstract. The present study documents the pace of accessory gland and testes degeneration in the wasp Vespula vulgaris by means of a histological and metric approach, that has not been carried out for social wasps so far. To a certain extent, comparison is made with the degenerative processes of the mucus glands of the honeybee drone. In V. vulgaris, no generative tissue is left by the end of 9 d of age, and so degeneration is a fast process. The three different parts of the accessory glands (muscle layer, gland epithelium, and lumen) change with respect to age. The secretory cells of the epithelium reach their maximum activity during the first days of adult life, which results in a maximally filled gland lumen by 9 d. We also provide, for the first time, a histological study of testes degeneration for this species. At eclosion, well‐defined cystic structures are still visible, whereas at 9 d, it is no longer possible to distinguish different cystic structures. The diameter of the testes decreases with respect to age.  相似文献   

20.
In order to find correlations between skin gland morphology and specific ethological features, the cutaneous glands of the foot pads of the primitive mammal the Madagascan tenrec, Echinops telfairi, were studied by histological and various histochemical methods as well as by electron microscopy. In the foot pads specific eccrine skin glands occurred consisting of coiled ducts and tubular secretory portions, the lumina of which were considerably wider than in primate sweat glands. The secretory tubules were composed of branched myoepithelial cells and glandular cells. The latter contained abundant mitochondria, large amounts of glycogen particles and few secretory granules as well as individual heterolysosomes and myelin bodies. The lateral cell membrane was marked by extensive interdigitations. The apical membranes of all glandular cells contained proteoglycans with sulfated and carboxylated groups containing N-acetyl-glucosamine, N-acetyl-galactosamine, galactose and mannose. The expression pattern of cytokeratins of the glandular epithelium was variable and showed similarities to that of the human eccrine glands. Tubulin, vinculin and actin were expressed in the glandular epithelium. The secretory cells showed positive reactions with antibodies against antimicrobial peptides and IgA. A positive reaction was observed with antibodies against the androgen receptor. The PCNA and TUNEL reactions indicated that the tubular skin glands of Echinops are made up of a slowly renewing tissue. We conclude that the glands fulfill several functions: production of a fluid-rich secretory product, which may prevent slipping of the foot pads on the substrate during running or climbing, secretion of antimicrobial peptides and proteins, and playing a role in thermoregulation.We thank the Fendt Foundation for financial support  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号