首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Smith-Lemli-Opitz syndrome (SLOS) is a genetic disorder characterized by low plasma cholesterol and high 7-dehydrocholesterol (7-DHC). Synthesis of cholesterol and 7-DHC and its metabolites is regulated by HMG-CoA reductase, whose activity can be measured by 24-h excretion of its product mevalonate. We devised a simple, non-invasive method for collecting 24-h urine in our subjects. With a background of a very low cholesterol diet, mean mevalonate excretion did not differ between controls and SLOS children, indicating that SLOS subjects have normal HMG-CoA reductase activity. In a short term feeding study, the effects of a high cholesterol diet in SLOS subjects include a significant 55% increase in plasma cholesterol levels and 39% decrease in mevalonate excretion and no change in plasma 7-DHC levels. However, in four SLOS subjects, fed a high cholesterol diet for 2-3 years, plasma cholesterol levels continued to increase, urinary mevalonate excretion remained low and total 7-DHC decreased significantly, likely from decreased total sterol synthesis. Thus, in SLOS subjects, HMG-CoA reductase activity was normal and was subject to normal cholesterol induced feedback inhibition. However, total sterol synthesis in SLOS may still be decreased because of increased diversion of mevalonate into the shunt pathway away from sterol synthesis.  相似文献   

2.
Purification and regulation of mevalonate kinase from rat liver   总被引:2,自引:0,他引:2  
Mevalonate kinase may play a key role in regulating cholesterol biosynthesis because its activity may be regulated via feedback inhibition by intermediates in the cholesterol biosynthetic pathway. To study the regulation of mevalonate kinase, the enzyme was purified to homogeneity from rat liver, and monospecific antibody against mevalonate kinase was prepared. The purified mevalonate kinase had a dimeric structure composed of identical subunits, and the Mr of the enzyme determined by gel chromatography was 86,000. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the subunit Mr was 39,900. The pI for mevalonate kinate was 6.2. The levels of mevalonate kinase protein and enzyme activity were determined in the livers of rats treated with either cholesterol-lowering agents (cholestyramine, pravastatin, and lovastatin) or with dietary modifications. Diets containing cholestyramine alone or cholestyramine and either pravastatin or lovastatin increased mevalonate kinase activity 3-6-fold. Mevalonate kinase activity decreased approximately 50% in rats treated with diets containing either 5% cholesterol or 5% cholesterol and 0.5% cholic acid. Fasting did not significantly change mevalonate kinase activity. The amount of mevalonate kinase protein in the liver was quantitated using immunoblots, and the changes in the levels of kinase activity induced by either drug treatment or by cholesterol feeding were correlated with similar changes in the levels of mevalonate kinase protein. Therefore, under these experimental conditions, mevalonate kinase activity in the liver was regulated principally by changes in the rates of enzyme synthesis and degradation.  相似文献   

3.
The shunt pathway of mevalonate metabolism (Edmond, J., and Popják, G. (1974) J. Biol. Chem. 249, 66-71) has been studied in isolated livers from fed rats perfused with physiological concentrations of variously labeled [14C]mevalonates. The measured rates of 14CO2 production were converted to rates of mitochondrial acetyl-CoA production from mevalonate by methods which take into account underestimations of metabolic rates derived from 14CO2 production. Our data confirm that the shunt pathway leads to mitochondrial acetyl-CoA. The apparent negligible rate of mevalonate shunting in liver, previously reported by others, stems from the very low contribution (congruent to 0.1%) of plasma mevalonate to total mevalonate metabolism in the liver. This contribution was assessed from the relative incorporations of 3H2O and [5-14C]mevalonate into sterols. In livers from fed rats, the shunt diverts about 5% of the production of mevalonate. The total rate of mevalonate shunting in the liver is about 200 times greater than in two kidneys. The liver is therefore the main site of mevalonate shunting in the rat.  相似文献   

4.
3-Hydroxy-3-methylglutaryl-CoA reductase, mevalonate kinase, mevalonate-5-phosphate kinase and mevalonate-5-pyrophosphate decarboxylase activities have been determined in brain, liver, intestine and kidneys from 19-day-old chick embryo. Levels of brain reductase and decarboxylase were clearly higher than those found in the other tissues assayed. However, only small differences were observed in the activity of both kinases among the different tissues. Mevalonate metabolism by sterol and nonsterol pathways has been investigated in chick embryo at the same developmental stage. Mevalonate incorporation into total nonsaponifiable lipids was maximal in liver, followed by intestine, brain and kidneys. The shunt pathway of mevalonate not leading to sterols was negligible in both brain and liver, while a clear CO2 production was observed in intestine and kidneys. Sterols running in TLC as lanosterol and cholesterol were the major sterols formed from mevalonate by brain and kidney slices, while squalene and squalene oxide(s) were found to be mainly synthesized by liver slices. Minor differences in the percentage of different sterols were observed in chick embryo intestine. The importance of free and esterified cholesterol accumulation in the different tissues on the inhibition of cholesterogenic activity is discussed.  相似文献   

5.
The modulation of the shunt pathway of mevalonate metabolism (Edmond, J., and Popják, G. (1974) J. Biol. Chem. 249, 66-71) has been studied in livers from fed, starved, and diabetic rats perfused with a physiological concentration (300 nM) of [5-14C] + [5-3H]mevalonate. Shunt activity was measured by (i) production of 14CO2 (corrected for loss of label by exchange reactions) and (ii) production of 3H2O. Contribution of exogenous mevalonate to total mevalonate production (0.06-0.11%) was assessed in parallel experiments by the incorporation of 3H2O into sterols. Inhibition of non-saponifiable lipid synthesis by starvation and diabetes is not associated with an inhibition of mevalonate production but with a major increase in shunting (7-34%) of sterol-bound mevalonate. The shunt pathway of mevalonate metabolism appears to participate in the regulation of cholesterol synthesis.  相似文献   

6.
The shunt pathway of mevalonate metabolism (Edmond, J., and Popják, G. (1974) J. Biol. Chem. 249, 66-71) has been studied in isolated kidneys from rats perfused with physiological concentrations of variously labeled [14C]- and [3H]mevalonates. The rate of operation of the shunt pathway was quantified by the production of either 14CO2 or 3H2O from the tracers. The measured rates of 14CO2 production from [14C] mevalonate were converted to rates of mitochondrial acetyl-CoA production by methods which take into account underestimations of metabolic rates derived from 14CO2 production. We have shown that the sex difference in renal shunting of mevalonate (Wiley, M. H., Howton, M. M., and Siperstein, M. D. (1979) J. Biol. Chem. 254, 837-842) occurs at physiological levels of substrate. The shunt pathway diverts up to 17% of the flux of mevalonate entering the cholesterol synthesis pathway in the kidney. It may, therefore, play a role in the long term regulation of cholesterol synthesis in this organ, as had been hypothesized by Edmond and Popják.  相似文献   

7.
The metabolism of mevalonic acid by both sterol and non-sterol pathways has been evaluated in nine tissues of the rat. An in vitro estimation of the non-sterol, or "shunt", pathway of mevalonate metabolism was made possible by determining the conversion of [2-14C]mevalonate or [5-14C]mevalonate to 14CO2 in tissue slices. In confirmation of our previous results, the kidney was found to play a major role in the metabolism of mevalonate to sterols and sterol precursors. The shunt pathway accounted for a significant percentage of the mevalonate metabolized in kidney, ileum, spleen, lung and testes, but was of minor importance or undetectable in liver, brain, skin, and adipose tissue. Kidney, however, proved to be by far the most active tissue site of mevalonate metabolism by the shunt mechanism in that, on an average, renal tissue metabolized (R)-[14C]mevalonate over the non-sterol pathway at a rate that was 21 times that of any other tissue examined. These results indicate that the kidneys are of major importance in the metabolism of mevalonate by each of the known pathways of metabolism of this sterol precursor.  相似文献   

8.
The effects of two peroxisome proliferators, gemfibrozil and clofibrate, on syntheses of dolichol and cholesterol in rat liver were investigated. Gemfibrozil did not affect the overall content of dolichyl phosphate, but it changed the chain-length distribution of dolichyl phosphate, increasing the levels of species with shorter isoprene units. Gemfibrozil suppressed synthesis of dolichyl phosphate from [(3)H]mevalonate and [(3)H]farnesyl pyrophosphate in rat liver. In contrast, clofibrate increased the content of dolichol (free and acyl ester forms). It remarkably enhanced dolichol synthesis from mevalonate, but did not affect dolichol synthesis from farnesyl pyrophosphate. Gemfibrozil elevated cholesterol synthesis from [(14)C]acetate, but did not affect the synthesis from mevalonate. Clofibrate suppressed cholesterol synthesis from acetate, but did not affect cholesterol synthesis from mevalonate. These results suggest that gemfibrozil suppresses synthesis of dolichyl phosphate by inhibiting, at the least, the pathway from farnesyl pyrophosphate to dolichyl phosphate. As a result, the chain-length pattern of dolichyl phosphate may show an increase in shorter isoprene units. Clofibrate may increase the content of dolichol by enhancing dolichol synthesis from mevalonate. Gemfibrozil may increase cholesterol synthesis by activating the pathway from acetate to mevalonate. Unlike gemfibrozil, clofibrate may decrease cholesterol synthesis by inhibiting the pathway from acetate to mevalonate.  相似文献   

9.
The concentrations of dolichol and cholesterol in livers of rats maintained for 2 weeks on a diet enriched with cholesterol (1%) were significantly higher than those in animals on a normal diet. The incorporation of radioactive mevalonate into dolichol and into a dolichyl diphosphate oligosaccharide fraction by liver slices of the cholesterol-fed animals was increased over that of the control group. However, the incorporation of radioactive mevalonate into cholesterol was decreased, as was the incorporation of radioactive acetate into both dolichol and, more markedly, cholesterol. These results are consistent with cholesterol feeding causing partial inhibition of the cholesterol-biosynthetic pathway both at β-hydroxy-β-methylglutaryl coenzyme A reductase and at a step after farnesyl pyrophosphate formation, resulting in a greater flux of mevalonate to dolichol and an increase in pool sizes of precursors of β-hydroxy-β-methylglutaryl coenzyme A. Maximal activity of glycosyl transfer to dolichyl phosphate was greater in microsomal preparations from livers of cholesterol-fed animals compared with those of control animals. A corresponding higher degree of in vitro glycosylation of endogenous protein was also observed. It is concluded that the cholesterol-enriched diet caused an increase in the biosynthesis and concentration of dolichyl monophosphate which resulted in a higher level of N-glycosylation of protein. These effects were complicated by differences in the kinetics of glycosyl transfer and in its response to exogenous dolichyl monophosphate.  相似文献   

10.
Both in vivo and in vitro incorporation of mevalonic acid into nonsaponifiable lipids by 17-day-old chick liver and kidney did not show diurnal rhythm. Using 14CO2 production from MVA as an index of the shunt pathway not leading to sterols, we have demonstrated for the first time that there is no diurnal rhythm in this pathway. No significant differences were found in the specific activities of mevalonate kinase, mevalonate-5-phosphate kinase and mevalonate-5-pyrophosphate decarboxylase from chick liver and kidney throughout a period of 24 hr, using [1-14C]mevalonate as substrate. The absence of diurnal rhythm in the decarboxylase activity was corroborated by further experiments carried out using [2-14C]mevalonate-5-pyrophosphate as specific substrate of this enzyme.  相似文献   

11.
Sites of control of hepatic cholesterol biosynthesis   总被引:9,自引:0,他引:9  
An inhibition in the conversion of mevalonate to cholesterol has been demonstrated in liver of cholesterol-fed rats by both in vitro and in vivo methods. Synthesis decreased to 30% of the control value after 1 week and 20% after 1 month on a 1% cholesterol diet. After a year, synthesis from mevalonate was almost completely inhibited. The rate of conversion of squalene to cholesterol was not consistently decreased but that of farnesyl pyrophosphate to cholesterol was decreased considerably. The rate of conversion of mevalonate to farnesyl pyrophosphate by a soluble liver enzyme preparation was also decreased in cholesterol-fed animals. Sites of inhibition of cholesterol synthesis were detected before mevalonate, between mevalonate and farnesyl pyrophosphate, and after farnesyl pyrophosphate, probably at the conversion of farnesyl pyrophosphate to squalene. The inhibition of mevalonate conversion to cholesterol developed more slowly than that of acetate and appeared to be secondary to it. The maximum capacities of normal liver homogenates and slices to synthesize cholesterol from mevalonate were shown to be far greater than from acetate. Consequently, sites of inhibition after mevalonate probably do not have a significant effect on the over-all rate of cholesterol synthesis in the intact cholesterol-fed animal.  相似文献   

12.
Supernatant protein factor (SPF) is a 46-kDa cytosolic protein that stimulates squalene monooxygenase in vitro and, unexpectedly, cholesterol synthesis in cell culture. Because squalene monooxygenase is not thought to be rate-limiting with regard to cholesterol synthesis, we investigated the possibility that SPF might stimulate other enzymes in the cholesterol biosynthetic pathway. Substitution of [(14)C]mevalonate for [(14)C]acetate in McARH7777 hepatoma cells expressing SPF reduced the 1.8-fold increase in cholesterol synthesis by half, suggesting that SPF acted on or prior to mevalonate synthesis. This conclusion was supported by the finding that substitution with [(14)C]mevalonate completely blocked an SPF-induced increase in squalene synthesis. Evaluation of 2,3-oxidosqualene synthesis from [(14)C]mevalonate demonstrated that SPF also stimulated squalene monooxygenase (1.3-fold) in hepatoma cells. Immunoblot analysis showed that SPF did not increase HMG-CoA reductase or squalene monooxygenase enzyme levels, indicating a direct effect on enzyme activity. Addition of purified recombinant SPF to rat liver microsomes stimulated HMG-CoA reductase by about 1.5-fold, and the SPF-concentration/activation curve paralleled that for the SPF-mediated stimulation of squalene monooxygenase. These results reveal that SPF directly stimulates HMG-CoA reductase, the rate-limiting step of the cholesterol biosynthetic pathway, as well as squalene monooxygenase, and suggest a new means by which cholesterol synthesis can be rapidly modulated in response to hormonal and environmental signals.  相似文献   

13.
Human liver alcohol dehydrogenase (ADH) catalyzes the oxidation of 3,3-dimethylallyl alcohol, the intermediary alcohol of the shunt pathway of mevalonate metabolism. ADH isozymes differ in their activities toward this alcohol in the order gamma 1 gamma 1 greater than gamma 2 gamma 2 approximately alfa alfa greater pi pi approximately beta 2 beta 2 approximately beta 1 beta 1 much greater than chi chi; kcat/Km values are 1.4 x 10(8), 1.9 x 10(7), 1.4 x 10(7), 5.6 x 10(6), 3.6 x 10(6), 1.6 x 10(6) and 2.5 x 10(3) M-1 min-1, respectively. The intermediary alcohols geraniol and farnesol of the proposed branch pathways of mevalonate metabolism are also oxidized by these isozymes with similar relative efficiencies. The genetic determinants of ADH isozymes may contribute to the observed differences in serum cholesterol levels among and within various populations.  相似文献   

14.
Mevalonate is metabolized by a sterol-forming and a non-sterol-forming, also called the "shunt", pathway. Effects of estrogen and testosterone administration on the shunt activity were examined in male and female Wistar and Sprague-Dawley rats. Shunt activity was determined in vivo from the yield of expired 14CO2 following [5-14C]mevalonate injection. Total mevalonate utilized was determined from the yield of expired 14CO2 following [1-14C]mevalonate injection. In the female, about 45% of mevalonate appears to be metabolized via the shunt, and in the male about 20%. This difference between male and female rats is dependent on both testosterone and estrogen, and apparently on testosterone to a greater extent. Thus estrogen treatment produced a 20-35% increase in shunt activity over castrated controls, while castration of males without hormonal treatment resulted in about a 50% increase in shunt activity, and testosterone administration returned castrated male and female shunt activity to that of intact males, or nearly so. Light/dark cycle had no effect in vivo on shunt activity, but may be critical in demonstrating sex differences in shunt activity in kidney slices.  相似文献   

15.
The regulation of 3-hydroxy-3-methylglutaryl-CoA reductase was studied in mouse uterine epithelium. The enzyme was rapidly inactivated during incubation with ATP/Mg2+ in vitro, and could be re-activated by incubation with partially purified rat liver phosphoprotein phosphatase. Enzyme activity was rapidly inhibited by mevalonate injection in vivo to approx. 30% of control. The percentage of total enzyme active in vivo was measured by inclusion of NaF in the isolation buffers. The percentage of enzyme active in vivo 18 h after stimulation by oestrogens remained at approx. 25% after inhibition of activity by mevalonate injection, cholesterol feeding or progesterone pretreatment. However, 9 h after oestrogen stimulation, cholesterol feeding inhibited enzyme activity to 57% of control, 94% of which was in the active form. We conclude that, although all components for a reversible phosphorylative regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity are present in uterine epithelial cells, a role in the rapid changes in epithelial enzyme activity has not been demonstrated.  相似文献   

16.
24S,25-Epoxycholesterol is formed in a shunt of the mevalonate pathway that produces cholesterol. It is one of the most potent known activators of the liver X receptors and can inhibit sterol regulatory element-binding protein processing. Until recently analysis of 24S,25-epoxycholesterol at high sensitivity has been precluded by its thermal lability and lack of a strong chromophore. Here we report on the analysis of 24S,25-epoxycholesterol in rodent brain where its level was determined to be of the order of 0.4–1.4 μg/g wet weight in both adult mouse and rat. For comparison the level of 24S-hydroxycholesterol in brain of both rodents was of the order of 20 μg/g, while that of cholesterol in mouse was 10–20 mg/g. By exploiting knockout mice for the enzyme oxysterol 7α-hydroxylase (Cyp7b1) we show that this enzymes is important for the subsequent metabolism of the 24S,25-epoxide.  相似文献   

17.
The cause of the hypercholesterolemia that characterizes the nephrotic syndrome has never been adequately explained. The present study examines the possibility that enhanced availability of the cholesterol precursor, mevalonic acid, to the liver in the nephrotic state may result in increased hepatic cholesterogenesis. In normal animals, the kidneys are known to be the major site of the metabolism of circulating mevalonate to both cholesterol and CO2. Previous studies, using perfusion of isolated, intact kidneys, have shown that the excretion and metabolism of mevalonate are both impaired in nephrosis. The present investigation has demonstrated in vivo that puromycin aminonucleoside nephrosis results in a 25% reduction in the oxidation of mevalonate to CO2. In the same nephrotic animals, cholesterogenesis from circulating mevalonate was significantly increased in both liver and carcass. In addition, liver slices from nephrotic animals incorporated increased amounts of [5-14C]mevalonate into cholesterol when calculated per whole liver, but not per gram of liver. Oxidation of mevalonic acid by kidney slices was significantly reduced, whether expressed as per gram of tissue or per whole organ. HMG-CoA (3-hydroxy-3-methylglutaryl) reductase activity in liver of nephrotic animals was significantly increased. We conclude that, in the nephrotic state, impaired mevalonate metabolism by the kidney may contribute to enhanced cholesterogenesis by increasing delivery of mevalonate to liver and carcass; in addition, nephrosis appears to provide an undefined stimulus for HMG-CoA reductase activity in the liver, thereby providing an additional enhancement of hepatic cholesterogenesis.  相似文献   

18.
The incorporation of mevalonate into nonsaponifiable lipids by chick liverin vivo strongly increased between 1–18 days after hatching. Cholesterol feeding (2%) inhibited this. Synthesis of cholesterol was strongly inhibited, whereas the intermediates isolated by TLC accumulated. Most of the polar nonsaponifiable lipids that accumulated in liver 90 minutes after mevalonate administration to 18-day-old cholesterol-fed chicks were identified as lanosterol derivative. 3-Hydroxy-3-methylglutaryl-CoA reductase activity, as well as acetate and mevalonate incorporation into nonsaponifiable lipids, was inhibited by the presence of these compounds. To our knowledge, this is the first report of such inhibition; this confirms the physiological function of polar steroids in the regulation of cholesterogenesisin vivo.To whom correspondence should be addressed.  相似文献   

19.
Cholesterol is an essential component of the CNS and its metabolism in the brain has been implicated in various neurodegenerative diseases. The oxysterol produced from cholesterol, 24( S )-hydroxycholesterol, is known to be an important regulator of brain cholesterol homeostasis. In this study, we focussed on another oxysterol, 24( S ),25-epoxycholesterol (24,25EC), which has not been studied before in a neurological context. 24,25EC is unique in that it is synthesized in a shunt in the mevalonate pathway, parallel to cholesterol and utilizing the same enzymes. Considering that all the cholesterol present in the brain is derived from de novo synthesis, we investigated whether or not primary human neurons and astrocytes can produce 24,25EC. We found that astrocytes produced more 24,25EC than neurons under basal conditions, but both cell types had the capacity to synthesize this oxysterol when the enzyme 2,3-oxidosqualene cyclase was partially inhibited. Furthermore, both added 24,25EC and stimulated cellular production of 24,25EC (by partial inhibition of 2,3-oxidosqualene cyclase) modulated expression of key cholesterol-homeostatic genes regulated by the liver X receptor and the sterol regulatory element-binding protein-2. Moreover, we found that 24,25EC synthesized in astrocytes can be taken up by neurons and exert downstream effects on gene regulation. In summary, we have identified 24,25EC as a novel neurosterol which plays a likely role in brain cholesterol homeostasis.  相似文献   

20.
1. Vitamin A-deficient rats were compared with similar animals given small amounts of vitamin A sufficient for adequate growth and with animals given large amounts of vitamin A. The effects of pair-feeding and feeding ad libitum were compared. 2. Ubiquinone and cholesterol concentrations in liver were measured at various stages of the deficiency, and the uptake of radioactive mevalonate and acetate into isoprenoid compounds was studied. 3. Ubiquinone concentrations in liver increased markedly in deficient rats compared with adequate controls, and heavy vitamin A supplementation had a further effect in depressing ubiquinone concentrations. These effects were unrelated to food intake or to the size of the organs. 4. Radioactive uptake into ubiquinone was often greater in deficient livers, especially during the early stages of the experiments, but the effect was not consistent. 5. Cholesterol concentrations were usually higher in deficient livers and these were more affected by the feeding regimen. 6. No consistent effect of vitamin A deficiency or of vitamin A dosage on the incorporation of mevalonate into cholesterol or squalene was found. 7. No evidence has been found for a specific effect of vitamin A on isoprenoid synthesis at the metabolic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号