首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ran GTPase activating protein RanGAP1 plays an essential role in nuclear transport by stimulating RanGTP hydrolysis in the cytoplasmic compartment. In mammalian cells, unmodified RanGAP1 is predominantly cytoplasmic, whereas modification by small ubiquitin-related modifier protein (SUMO) targets RanGAP1 to the cytoplasmic filaments of nuclear pore complex (NPC). Although RanGAP1 contains nine putative nuclear export signals and a nuclear localization signal, little is known if RanGAP1 shuttles between the nuclear and cytoplasmic compartments and how its primary localization in the cytoplasm and at the NPC is regulated. Here we show that inhibition of CRM1-mediated nuclear export using RNAi-knockdown of CRM1 and inactivation of CRM1 by leptomycin B (LMB) results in nuclear accumulation of RanGAP1. LMB treatment induced a more robust redistribution of RanGAP1 from the cytoplasm to the nucleoplasm compared to CRM1 RNAi and also uniquely triggered a decrease or loss of RanGAP1 localization at the NPC, suggesting that LMB treatment is more effective in inhibiting CRM1-mediated nuclear export of RanGAP1. Our time-course analysis of LMB treatment reveals that the NPC-associated RanGAP1 is much more slowly redistributed to the nucleoplasm than the cytoplasmic RanGAP1. Furthermore, LMB-induced nuclear accumulation of RanGAP1 is positively correlated with an increase in levels of SUMO-modified RanGAP1, suggesting that SUMOylation of RanGAP1 may mainly take place in the nucleoplasm. Lastly, we demonstrate that the nuclear localization signal at the C-terminus of RanGAP1 is required for its nuclear accumulation in cells treated with LMB. Taken together, our results elucidate that RanGAP1 is actively transported between the nuclear and cytoplasmic compartments, and that the cytoplasmic and NPC localization of RanGAP1 is dependent on CRM1-mediated nuclear export.  相似文献   

2.
Active transport between nucleus and cytoplasm proceeds through nuclear pore complexes (NPCs) and is mediated largely by shuttling transport receptors that use direct RanGTP binding to coordinate loading and unloading of cargo [1], [2], [3], [4]. Import receptors such as importin β or transportin bind their substrates at low RanGTP levels in the cytoplasm and release them upon encountering RanGTP in the nucleus, where a high RanGTP concentration is predicted. This substrate release is, in the case of import by the importin α/β heterodimer, coupled directly to importin β release from the NPCs. If the importin β –RanGTP interaction is prevented, import intermediates arrest at the nuclear side of the NPCs [5], [6]. This arrest makes it difficult to probe directly the Ran and energy requirements of the actual translocation from the cytoplasmic to the nuclear side of the NPC, which immediately precedes substrate release. Here, we have shown that in the case of transportin, dissociation of transportin–substrate complexes is uncoupled from transportin release from NPCs. This allowed us to dissect the requirements of translocation through the NPC, substrate release and transportin recycling. Surprisingly, translocation of transportin–substrate complexes into the nucleus requires neither Ran nor nucleoside triphosphates (NTPs). It is only nuclear RanGTP, not GTP hydrolysis, that is needed for dissociation of transportin–substrate complexes and for re-export of transportin to the cytoplasm. GTP hydrolysis is apparently required only to restore the import competence of the re-exported transportin and, thus, for multiple rounds of transportin-dependent import. In addition, we provide evidence that at least one type of substrate can also complete NPC passage mediated by importin β independently of Ran and energy.  相似文献   

3.
Zhao Q  Brkljacic J  Meier I 《The Plant cell》2008,20(6):1639-1651
Ran GTPase plays essential roles in multiple cellular processes, including nucleocytoplasmic transport, spindle formation, and postmitotic nuclear envelope (NE) reassembly. The cytoplasmic Ran GTPase activating protein RanGAP is critical to establish a functional RanGTP/RanGDP gradient across the NE and is associated with the outer surface of the NE in metazoan and higher plant cells. Arabidopsis thaliana RanGAP association with the root tip NE requires a family of likely plant-specific nucleoporins combining coiled-coil and transmembrane domains (CC-TMD) and WPP domain-interacting proteins (WIPs). We have now identified, by tandem affinity purification coupled with mass spectrometry, a second family of CC-TMD proteins, structurally similar, yet clearly distinct from the WIP family, that is required for RanGAP NE association in root tip cells. A combination of loss-of-function mutant analysis and protein interaction data indicates that at least one member of each NE-associated CC-TMD protein family is required for RanGAP targeting in root tip cells, while both families are dispensable in other plant tissues. This suggests an unanticipated complexity of RanGAP NE targeting in higher plant cells, contrasting both the single nucleoporin anchor in metazoans and the lack of targeting in fungi and proposes an early evolutionary divergence of the underlying plant and animal mechanisms.  相似文献   

4.
The GTPase Ran is essential for nuclear import of proteins with a classical nuclear localization signal (NLS). Ran''s nucleotide-bound state is determined by the chromatin-bound exchange factor RCC1 generating RanGTP in the nucleus and the cytoplasmic GTPase activating protein RanGAP1 depleting RanGTP from the cytoplasm. This predicts a steep RanGTP concentration gradient across the nuclear envelope. RanGTP binding to importin-beta has previously been shown to release importin-alpha from -beta during NLS import. We show that RanGTP also induces release of the M9 signal from the second identified import receptor, transportin. The role of RanGTP distribution is further studied using three methods to collapse the RanGTP gradient. Nuclear injection of either RanGAP1, the RanGTP binding protein RanBP1 or a Ran mutant that cannot stably bind GTP. These treatments block major export and import pathways across the nuclear envelope. Different export pathways exhibit distinct sensitivities to RanGTP depletion, but all are more readily inhibited than is import of either NLS or M9 proteins, indicating that the block of export is direct rather than a secondary consequence of import inhibition. Surprisingly, nuclear export of several substrates including importin-alpha and -beta, transportin, HIV Rev and tRNA appears to require nuclear RanGTP but may not require GTP hydrolysis by Ran, suggesting that the energy for their nuclear export is supplied by another source.  相似文献   

5.
The GTPase Ran is a key regulator of molecular transport through nuclear pore complex (NPC) channels. To analyze the role of Ran in its nuclear transport function, we used several quantitative fluorescence techniques to follow the distribution and dynamics of an enhanced yellow fluorescent protein (EYFP)-Ran in HeLa cells. The diffusion coefficient of the majority of EYFP-Ran molecules throughout the cells corresponded to an unbound state, revealing the remarkably dynamic Ran regulation. Although we observed no significant immobile Ran populations in cells, ∼10% of the cytoplasmic EYFP-Ran and 30% of the nuclear EYFP-Ran exhibited low mobility indicative of molecular interactions. The high fraction of slow nuclear EYFP-Ran reflects the expected numerous interactions of nuclear RanGTP with nuclear transport receptors. However, it is not high enough to support retention mechanisms as the main cause for the observed nuclear accumulation of Ran. The highest cellular concentration of EYFP-Ran was detected at the nuclear envelope, corresponding to ∼200 endogenous Ran molecules for each NPC, and exceeding the currently estimated NPC channel transport capacity. Together with the relatively long residence time of EYFP-Ran at the nuclear envelope (33 ± 14 ms), these observations suggest that only a fraction of the Ran concentrated at NPCs transits through NPC channels.  相似文献   

6.
In eukaryotic cells the nuclear envelope (NE) serves as a functional barrier between cytosol and nucleoplasm perforated by nuclear pore complexes (NPCs). Both active and passive transport of ions and macromolecules are thought to be mediated by the centrally located large NPC channel. However, 3-dimensional imaging of NPCs based on electron microscopy indicates the existence of additional small channels of unknown function located in the NPC periphery. By means of the recently developed nuclear hourglass technique that measures NE electrical conductance, we evaluated passive electrically driven transport through NPCs. In isolated Xenopus laevis oocyte nuclei, we varied ambient Ca2+ and ATP in the cytosolic solution and/or chelated Ca2+ in the perinuclear stores in order to assess the role of Ca2+ in regulating passive ion transport. We noticed that NE electrical conductance is large under conditions where macromolecule permeability is known to be low. In addition, atomic force microscopy applied to native NPCs detects multiple small pores in the NPC periphery consistent with channel openings. Peripheral pores were detectable only in the presence of ATP. We conclude that NPC transport of ions and macromolecules occurs through different routes. We present a model in which NE ion flux does not occur through the central NPC channel but rather through Ca2+- and ATP-activated peripheral channels of individual NPCs.  相似文献   

7.
RanGAP1 is the GTPase-activating protein for Ran, a small ras-like GTPase involved in regulating nucleocytoplasmic transport. In vertebrates, RanGAP1 is present in two forms: one that is cytoplasmic, and another that is concentrated at the cytoplasmic fibers of nuclear pore complexes (NPCs). The NPC-associated form of RanGAP1 is covalently modified by the small ubiquitin-like protein, SUMO-1, and we have recently proposed that SUMO-1 modification functions to target RanGAP1 to the NPC. Here, we identify the domain of RanGAP1 that specifies SUMO-1 modification and demonstrate that mutations in this domain that inhibit modification also inhibit targeting to the NPC. Targeting of a heterologous protein to the NPC depended on determinants specifying SUMO-1 modification and also on additional determinants in the COOH-terminal domain of RanGAP1. SUMO-1 modification and these additional determinants were found to specify interaction between the COOH-terminal domain of RanGAP1 and a region of the nucleoporin, Nup358, between Ran-binding domains three and four. Together, these findings indicate that SUMO-1 modification targets RanGAP1 to the NPC by exposing, or creating, a Nup358 binding site in the COOH-terminal domain of RanGAP1. Surprisingly, the COOH-terminal domain of RanGAP1 was also found to harbor a nuclear localization signal. This nuclear localization signal, and the presence of nine leucine-rich nuclear export signal motifs, suggests that RanGAP1 may shuttle between the nucleus and the cytoplasm.  相似文献   

8.
The nuclear pore complex (NPC) is a large proteinaceous structure through which bidirectional transport of macromolecules across the nuclear envelope (NE) takes place. Nup153 is a peripheral NPC component that has been implicated in protein and RNP transport and in the interaction of NPCs with the nuclear lamina. Here, Nup153 is localized by immunogold electron microscopy to a position on the nuclear ring of the NPC. Nuclear reconstitution is used to investigate the role of Nup153 in nucleo- cytoplasmic transport and NPC architecture. NPCs assembled in the absence of Nup153 lacked several nuclear basket components, were unevenly distributed in the NE and, unlike wild-type NPCs, were mobile within the NE. Importin alpha/beta-mediated protein import into the nucleus was strongly reduced in the absence of Nup153, while transportin-mediated import was unaffected. This was due to a reduction in import complex translocation rather than to defective receptor recycling. Our results therefore reveal functions for Nup153 in NPC assembly, in anchoring NPCs within the NE and in mediating specific nuclear import events.  相似文献   

9.
Nuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation. During early stages of mitotic NPC assembly, a seed for new NPCs is established on chromatin, yet the factors connecting the NPC seed to the membrane of the forming nuclear envelope are unknown. Here, we report that the reticulon homology domain protein REEP4 not only localizes to high-curvature membrane of the cytoplasmic endoplasmic reticulum but is also recruited to the inner nuclear membrane by the NPC biogenesis factor ELYS. This ELYS-recruited pool of REEP4 promotes NPC assembly and appears to be particularly important for NPC formation during mitosis. These findings suggest a role for REEP4 in coordinating nuclear envelope reformation with mitotic NPC biogenesis.  相似文献   

10.
Vertebrate tRNA export receptor exportin-t (Xpo-t) binds to RanGTP and mature tRNAs cooperatively to form a nuclear export complex. Xpo-t shuttles bidirectionally through nuclear pore complexes (NPCs) but is mainly nuclear at steady state. The steady-state distribution of Xpo-t is shown to depend on its interaction with RanGTP. Two distinct Xpo-t NPC interaction domains that bind differentially to peripherally localized nucleoporins in vitro are identified. The N terminus binds to both Nup153 and RanBP2/Nup358 in a RanGTP-dependent manner, while the C terminus binds to CAN/Nup214 independently of Ran. We propose that these interactions increase the concentration of tRNA export complexes and of empty Xpo-t in the vicinity of NPCs and thus increase the efficiency of the Xpo-t transport cycle.  相似文献   

11.
In vertebrate cells, the nucleoporin Nup358/RanBP2 is a major component of the filaments that emanate from the nuclear pore complex into the cytoplasm. Nup358 forms a complex with SUMOylated RanGAP1, the GTPase activating protein for Ran. RanGAP1 plays a pivotal role in the establishment of a RanGTP gradient across the nuclear envelope and, hence, in the majority of nucleocytoplasmic transport pathways. Here, we investigate the roles of the Nup358-RanGAP1 complex and of soluble RanGAP1 in nuclear protein transport, combining in vivo and in vitro approaches. Depletion of Nup358 by RNA interference led to a clear reduction of importin alpha/beta-dependent nuclear import of various reporter proteins. In vitro, transport could be partially restored by the addition of importin beta, RanBP1, and/or RanGAP1 to the transport reaction. In intact Nup358-depleted cells, overexpression of importin beta strongly stimulated nuclear import, demonstrating that the transport receptor is the most rate-limiting factor at reduced Nup358-concentrations. As an alternative approach, we used antibody-inhibition experiments. Antibodies against RanGAP1 inhibited the enzymatic activity of soluble and nuclear pore-associated RanGAP1, as well as nuclear import and export. Although export could be fully restored by soluble RanGAP, import was only partially rescued. Together, these data suggest a dual function of the Nup358-RanGAP1 complex as a coordinator of importin beta recycling and reformation of novel import complexes.  相似文献   

12.
Asymmetric localization of Ran regulators (RanGAP1 and RanGEF/RCC1) produces a gradient of RanGTP across the nuclear envelope. In higher eukaryotes, the nuclear envelope breaks down as the cell enters mitosis (designated "open" mitosis). This nuclear envelope breakdown (NEBD) leads to collapse of the RanGTP gradient and the diffusion of nuclear and cytoplasmic macromolecules in the cell, resulting in irreversible progression of the cell cycle. On the other hand, in many fungi, chromosome segregation takes place without NEBD (designated "closed" mitosis). Here we report that in the fission yeast Schizosaccharomyces pombe, despite the nuclear envelope and the nuclear pore complex remaining intact throughout both the meiotic and mitotic cell cycles, nuclear proteins diffuse into the cytoplasm transiently for a few minutes at the onset of anaphase of meiosis II. We also found that nuclear protein diffusion into the cytoplasm occurred coincidently with nuclear localization of Rna1, an S. pombe RanGAP1 homolog that is usually localized in the cytoplasm. These results suggest that nuclear localization of RanGAP1 and depression of RanGTP activity in the nucleus may be mechanistically tied to meiosis-specific diffusion of nuclear proteins into the cytoplasm. This nucleocytoplasmic shuffling of RanGAP1 and nuclear proteins represents virtual breakdown of the nuclear envelope.  相似文献   

13.
Xu XM  Meulia T  Meier I 《Current biology : CB》2007,17(13):1157-1163
The Ran GTPase controls multiple cellular processes including nucleocytoplasmic transport, spindle assembly, and nuclear envelope (NE) formation [1-4]. Its roles are accomplished by the asymmetric distribution of RanGTP and RanGDP enabled by the specific locations of the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1 [5-8]. Mammalian RanGAP1 targeting to the NE and kinetochores requires interaction of its sumoylated C-terminal domain with the nucleoporin Nup358/RanBP2 [9-14]. In contrast, Arabidopsis RanGAP1 is associated with the NE and cell plate, mediated by an N-terminal, plant-specific WPP domain [15-18]. In the absence of RanBP2 in plants, the mechanism for spatially sequestering plant RanGAP is unknown. Here, Arabidopsis WPP-domain interacting proteins (WIPs) that interact with RanGAP1 in vivo and colocalize with RanGAP1 at the NE and cell plate were identified. Immunogold labeling indicates that WIP1 is associated with the outer NE. In a wip1-1/wip2-1/wip3-1 triple mutant, RanGAP1 is dislocated from the NE in undifferentiated root-tip cells, whereas NE targeting in differentiated root cells and targeting to the cell plate remain intact. We propose that WIPs are novel plant nucleoporins involved in RanGAP1 NE anchoring in specific cell types. Our data support a separate evolution of RanGAP targeting mechanisms in different kingdoms.  相似文献   

14.
Transport across the nuclear membranes occurs through the nuclear pore complex (NPC), and is mediated by soluble transport factors including Ran, a small GTPase that is generally GDP-bound during import and GTP-bound for export. The dynamic nature of the NPC structure suggests a possible active role for it in driving translocation. Here we show that RanGTP but not RanGDP causes alterations of NPC structure when injected into the cytoplasm of Xenopus oocytes, including compaction of the NPC and extension of the cytoplasmic filaments. RanGTP caused accumulation of nucleoplasmin-gold along the length of extended cytoplasmic filaments, whereas RanGDP caused accumulation around the cytoplasmic rim of the NPC. This suggests a possible role for Ran in altering the conformation of the cytoplasmic filaments during transport.  相似文献   

15.
NTF2 mediates nuclear import of Ran.   总被引:17,自引:1,他引:16       下载免费PDF全文
Importin beta family transport receptors shuttle between the nucleus and the cytoplasm and mediate transport of macromolecules through nuclear pore complexes (NPCs). The interactions between these receptors and their cargoes are regulated by binding RanGTP; all receptors probably exit the nucleus complexed with RanGTP, and so should deplete RanGTP continuously from the nucleus. We describe here the development of an in vitro system to study how nuclear Ran is replenished. Nuclear import of Ran does not rely on simple diffusion as Ran's small size would permit, but instead is stimulated by soluble transport factors. This facilitated import is specific for cytoplasmic RanGDP and employs nuclear transport factor 2 (NTF2) as the actual carrier. NTF2 binds RanGDP initially to NPCs and probably also mediates translocation of the NTF2-RanGDP complex to the nuclear side of the NPCs. A direct NTF2-RanGDP interaction is crucial for this process, since point mutations that disturb the RanGDP-NTF2 interaction also interfere with Ran import. The subsequent nuclear accumulation of Ran also requires GTP, but not GTP hydrolysis. The release of Ran from NTF2 into the nucleus, and thus the directionality of Ran import, probably involves nucleotide exchange to generate RanGTP, for which NTF2 has no detectable affinity, followed by binding of the RanGTP to an importin beta family transport receptor.  相似文献   

16.
All major nuclear export pathways so far examined follow a general paradigm. Specifically, a complex is formed in the nucleus, containing the export cargo, a member of the importin-beta family of transporters and RanGTP. This complex is translocated across the nuclear pore to the cytoplasm, where hydrolysis of the GTP on Ran is stimulated by the GTPase-activating protein RanGAP. The activity of RanGAP is increased by RanBP1, which also promotes disassembly of RanGTP-cargo-transporter complexes. Here we investigate the role of RanGTP in the export of mRNAs generated by splicing. We show that nuclear injection of a Ran mutant (RanT24N) or the normally cytoplasmic RanGAP potently inhibits the export of both tRNA and U1 snRNA, but not of spliced mRNAs. Moreover, nuclear injection of RanGAP together with RanBP1 blocks tRNA export but does not affect mRNA export. These and other data indicate that export of spliced mRNA is the first major cellular transport pathway that is independent of the export co-factor Ran.  相似文献   

17.
So far, POM121 and gp210 are the only known anchoring sites of vertebrate nuclear pore complexes (NPCs) within the lipid bilayer of the nuclear envelope (NE) and, thus, are excellent candidates for initiating the NPC assembly process. Indeed, we demonstrate that POM121 can recruit several nucleoporins, such as Nup62 or Nup358, to ectopic assembly sites. It thus appears to act as a nucleation site for the assembly of NPC substructures. Nonetheless, we observed functional NPCs and intact NEs in severely POM121-depleted cells. Double knockdowns of gp210 and POM121 in HeLa cells, as well as depletion of POM121 from human fibroblasts, which do not express gp210, further suggest that NPCs can assemble or at least persist in a POM121- and gp210-free form. This points to extensive redundancies in protein-protein interactions within NPCs and suggests that vertebrate NPCs contain additional membrane-integral nucleoporins for anchorage within the lipid bilayer of the NE. In Stavru et al., we describe such an additional transmembrane nucleoporin as the metazoan orthologue of yeast Ndc1p.  相似文献   

18.
The nuclear pore complex (NPC) controls transport of macromolecules across the nuclear envelope. It is large and complex but appears to consist of only approximately 30 different proteins despite its mass of > 60MDa. Vertebrate NPC structure has been analyzed by several methods giving a comprehensive architectural model. Despite our knowledge of yeast nucleoporins, structural data is more limited and suggests the basic organization is similar to vertebrates, but may lack some peripheral and other components. Using field emission scanning electron microscopy to probe NPC structure we found that the yeast, like higher eukaryotic, NPCs contain similar peripheral components. We can detect cytoplasmic rings and evidence of nucleoplasmic rings in yeasts. A filamentous basket is present on the nucleoplasmic face and evidence for cytoplasmic filaments is shown. We observed a central structure, possibly the transporter, that which may be linked to the cytoplasmic ring by internal filaments. Immuno-gold labeling suggested that Nup159p may be attached to the cytoplasmic ring, whereas Nup116p may be associated, partly, with the cytoplasmic filaments. Analysis of a Nup57p mutant suggested a role in maintaining the stability of cytoplasmic components of the NPC. We conclude that peripheral NPC components appear similar in yeasts compared to higher organisms and present a revised model for yeast NPC structural composition.  相似文献   

19.
《The Journal of cell biology》1996,135(6):1457-1470
Ran is a nuclear Ras-like GTPase that is required for the bidirectional transport of proteins and ribnucleoproteins across the nuclear pore complex (NPC). A key regulator of the Ran GTP/GDP cycle is the 70-kD Ran-GTPase-activating protein RanGAP1. Here, we report the identification and localization of a novel form of RanGAP1. Using peptide sequence analysis and specific mAbs, RanGAP1 was found to be modified by conjugation to a ubiquitin-like protein. Immunoblot analysis and immunolocalization by light and EM demonstrated that the 70-kD unmodified from of RanGAP1 is exclusively cytoplasmic, whereas the 90-kD modified form of RanGAP1 is associated with the cytoplasmic fibers of the NPC. The modified form of RanGAP1 also appeared to associated with the mitotic spindle apparatus during mitosis. These findings have specific implications for Ran function and broad implications for protein regulation by ubiquitin-like modifications. Moreover, the variety and function of ubiquitin-like protein modifications in the cell may be more diverse than previously realized.  相似文献   

20.
The Segregation Distorter (SD) system of Drosophila melanogaster is one the best-characterized meiotic drive complexes known. SD gains an unfair transmission advantage through heterozygous SD/SD(+) males by incapacitating SD(+)-bearing spermatids so that virtually all progeny inherit SD. Segregation distorter (Sd), the primary distorting locus in the SD complex, is a truncated duplication of the RanGAP gene, a major regulator of the small GTPase Ran, which has several functions including the maintenance of the nucleocytoplasmic RanGTP concentration gradient that mediates nuclear transport. The truncated Sd-RanGAP protein is enzymatically active but mislocalizes to the nucleus where it somehow causes distortion. Here I present data consistent with the idea that wild-type RanGAP, and possibly other loci able to influence the RanGTP gradient, has been caught up in an ancient genetic conflict that predates the SD complex. The legacy of this conflict could include the unexpectedly rapid evolution of nuclear transport-related proteins, the accumulation of chromosomal inversions, the recruitment of gene duplications, and the turnover of repetitive sequences in the centric heterochromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号