首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The influence of elevational changes on plant transpiration was evaluated using leaf energy balance equations and well-known elevational changes in the physical parameters that influence water vapor diffusion. Simulated transpirational fluxes for large leaves with low and high stomatal resistances to water vapor diffusion were compared to small leaves with identical stomatal resistances at elevations ranging from sea level to 4 km. The specific influence of various air temperature lapse rates was also tested. Validation of the simulated results was accomplished by comparing actual field measurements taken at a low elevation (300 m) desert site with similar measurements for a high elevation (2,560 m) mountain research site. Close agreement was observed between predicted and measured values of transpiration for the environmental and leaf parameters tested.Substantial increases in solar irradiation and the diffusion coefficient for water vapor in air (D wv) occurred with increasing elevation, while air and leaf temperatures, the water vapor concentration difference between the leaf and air, longwave irradiation, and the thermal conductivity coefficient for heat in air decreased with increasing elevation. These changes resulted in temperatures for sunlit leaves that were further above air temperature at higher elevations, especially for large leaves. For large leaves with low stomatal resistances, transpirational fluxes for low-elevation desert plants were close to those predicted for high-elevation plants even though the sunlit leaf temperatures of these mountain plants were over 10°C cooler. Simulating conditions with a low air temperature lapse rate (0.003° C m-1 and 0.004° C m-1) resulted in predicted transpirational fluxes that were greater than those calculated for the desert site. Transpiration for smaller leaves decreased with elevation for all lapse rates tested (0.003° C m-1 to 0.010° C m-1). However, transpirational fluxes at higher elevations were considerably greater than expected for all leaves, especially larger leaves, due to the strong influence of increased solar heating and a greater D wv. These results are discussed in terms of similarities in leaf structure and plant habit observed among low-elevation desert plants and high-elevation alpine and subalpine plants.  相似文献   

2.
Physiological integration may help clonal macrophytes invade or escape from existing communities. No studies have tested the above hypothesis in aquatic plants. In an outdoor pond experiment, we subjected clonal fragments of the submerged macrophyte Vallisneria spiralis L. to heterogeneous environments in which V. spiralis spread from bare habitats towards vegetated habitats occupied by Myriophyllum spicatum L. or V. spiralis spread from vegetated habitats towards bare habitats. V. spiralis stolons between ramets in bare habitats and in vegetated habitats were either intact or severed. We investigated the habitat selection of V. spiralis by examining the allocation of biomass and ramets to heterogeneous habitats during its vegetative spread phase. Results showed that the stolon connection had different effects on the habitat selection of V. spiralis with regard to invasion and escape. When V. spiralis spread from bare to vegetated habitats, in comparison to severing the stolon, the stolon connection eventually facilitated a 49% increase in biomass and a 27% increase in number of ramets allocated to vegetated habitats. However, when V. spiralis spread from vegetated to bare habitats, biomass and ramets allocated to bare habitats were not significantly changed by the stolon connection (only a 5% increase in biomass and a 6% increase in number of ramets). These results indicate that clonal integration facilitated V. spiralis not to escape from but invade into vegetated habitats. The study provides evidence that physiological integration is important for survival and tolerance of ramets in competitively stressful environments and can help clonal macrophytes coexist with other species.  相似文献   

3.
Leaf resistance (RL) of Kalanchoe blossfeldiana to water vapor transfer was determined with a resistance hygrometer. The diurnal leaf-resistance change followed a normal pattern (i.e., low in light and higher in dark) when plants were pretreated with cool thermoperiods or with thermoperiods having little diurnal temperature fluctuation. Large diurnal temperature fluctuations (30-18, 26-15 C) resulted in apparent nocturnal stomatal opening. Nocturnal stomatal opening was more apparent than real since leaf-resistance measurements indicated day stomatal closing rather than complete night opening. Low nocturnal leaf resistances ( < 10 sec/cm) were not measured in the dark; however, resistances tended to decrease toward the end of the dark period indicating some degree of nocturnal stomatal opening. Leaf resistances were generally higher than those reported for nonsucculent plants. The data suggested that gaseous diffusion (Q) into or out of the leaves of K. blossfeldiana would be adequately described by an equation of the form, Q = D Δ e RL−1. There was little or no indication that physiological long days (15 min of 660 mμ light in the middle of a 16-hr dark period), which prevented flowering and reduced organic acid accumulation, significantly affected leaf resistance. It was concluded that the photoperiod response effects of dark CO2 fixation were probably not due to leaf-resistance changes and, therefore, not due to stomatal aperture changes.  相似文献   

4.
As part of an intensive study of heritable differences among the progeny of Pinus ponderosa parents from two contrasting habitats (coastal vs. interior, continental), we examined the potential for differences in photosynthesis rate, stomatal conductance, and photosynthetic water-use efficiency. Plants from a cross between two coastal parents (ponderosa × ponderosa) exhibited lower photosynthetic water-use efficiencies, relative to plants from a coastal × interior cross (ponderosa × scopulorum). The lower water-use efficiencies in the ponderosa × ponderosa plants were evident as a lower ratio of external to intercellular CO2 concentrations and higher stomatal conductances at any given rate of photosynthesis. The ponderosa × scopulorum plants exhibited lower stomatal conductances over a range of leaf-to-air water vapor concentration differences, which was partially explained by lower stomatal densities. The ponderosa × scopulorum plants also exhibited lower maximum photosynthesis rates and lower needle nitrogen concentrations. Taken together, the results suggest that in adapting to drier habitats, P. ponderosa has acquired improved water-use efficiencies and lower transpiration rates, but at the expense of reduced maximum photosynthesis rates.  相似文献   

5.
CO2 exchange, transpiration and leaf water potential of Welwitschia mirabilis were measured in three contrasting habitats of the Namib desert. From these measurements stomatal conductance, internal CO2concentration and WUE were calculated. In two of the three habitats photosynthetic CO2 uptake decreased and transpiration increased with increasing leaf age while in the third habitat CO2 uptake increased and transpiration decreased with leaf age. Except for the stomata of young leaf sections in this habitat, stomata closed with increasing δw leading to a pronounced midday depression of CO2 uptake. The high stomatal limitation of photosynthetic CO2 uptake of glasshouse-grown plants was verified in the natural habitat. Photosynthetic CO2 uptake saturated between 800 and 1300 μmol photons m?2 s?1depending on leaf age and habitat. CO2 uptake had a broad temperature optimum declining significantly beyond 32 °C. Predawn leaf water potential reflected water availability and atmospheric conditions in the three habitats and ranged from ? 2.5 to ? 6.2 MPa. There was a pronounced diurnal course of leaf water potential in all habitats. During the day a gradient in water potential developed along the leaf axis with the lowest potential at the leaf's tip. With respect to whole plant balances of CO2 exchange and transpiration, there were marked differences between Welwitschias in the three habitats. Despite a negative CO2 balance over a period of five months, leaves in the driest habitat grew constantly at the expense of carbon reserves in the plant. Only at the wettest site did carbon gain exceed carbon demand for growth. The WUE of whole plants was insignificant in all habitats. The results were as contrasting as the habitats and plants and did not allow generalisations about adaptational features of Welwitschia mirabilis.  相似文献   

6.
Stomatal responses to changes in temperature at increasing water stress   总被引:3,自引:0,他引:3  
Summary The response of stomata to a gradual increase in temperature at increasing plant water stress was studied in a hot desert habitat (Negev, Israel) in the field, but under controlled temperature and humidity conditions. Four native species (Zygophyllum dumosum, Artemisia herba-alba, Hammada scoparia, Reaumuria negevensis) and one cultivated plant (Prunus armeniaca) were used in these studies. The stomatal response to temperature was compared with the response in well-irrigated plants of the same species.At low water stress, the diffusion resistance for water vapour decreased in response to a gradual increase in temperature. Transpiration increased accordingly. This response was reversible. All species responded in the same way. The opening of stomata with increasing temperature was apparently independent of the stomatal response regulated by atmospheric humidity. At high plant water stress, the stomatal response was reversed, i.e., the stomata closed when temperature was gradually increased. This stomatal closure was also independent of the closure regulated by atmospheric humidity. The plant water potential at which the stomatal response to temperature was reversed, differed among the species investigated.  相似文献   

7.
Excised leaves of Nerium oleander, which were treated with phenylmercuric acetate (PMA) 11/2 h before excising, transpired faster than untreated excised leaves. Similarly, PMA-treated oleander plants transpired more than untreated plants in the dark. These effects were due to retarded stomatal closure caused by PMA. Measurements of stomatal apertures on disks of Vicia faba leaves kept in the dark, and of diffusive resistance to water vapor from Phaseolus vulgaris leaves, confirmed that PMA retards stomatal closing as well as stomatal opening. However, day-time reductions in transpiration by PMA greatly exceed night-time increases in water loss. The mechanisms of stomatal movement, as affected by PMA, are discussed. PMA may conceivably decrease the permeability of guard cell membranes to solutes, thereby retarding all stomatal movements that are osmotically induced.  相似文献   

8.
CO2 and water vapor exchange studies of intact plants of black needle rush (Juncus roemerianus Scheele) were conducted in an undisturbed marsh community on Sapelo Island, Georgia. The seasonal patterns of the light and temperature responses of net photosynthesis, transpiration, leaf diffusive conductance, water-use efficiency and respiration were determined five times over the year. Internal resistances to CO2 uptake were also evaluated. Net photosynthesis was highest in early spring, but declined only slightly through the year. A distinct and moderate temperature optimum of net photosynthesis was observed with decreasing rates above 30 C. Leaf conductances to water vapor were similar at all seasons and were high at cooler temperatures and decreased with increasing temperature. Transpiration was relatively high and constant during all seasons. The water-use efficiency of photosynthesis was high below 25 C, but decreased sharply above that temperature. Dark respiration was relatively low. Seasonal changes reflected changes in leaf density. Decreasing stomatal conductances and increasing respiration rates reduced net photosynthesis at higher temperatures. The stomatal resistance increased and internal resistances to CO2 uptake decreased over the year, but the total resistance remained constant. The internal resistance to CO2 uptake was consistently higher than the stomatal resistance. These seasonal response patterns show that J. roemerianus is well adapted to the seasonal changes in ambient temperature and irradiance and other microenvironmental factors in the high marsh. These physiological characteristics permit this C3 species to maintain a high productivity in a seasonally hot and stressful environment.  相似文献   

9.
Net carbon assimilation and stomatal conductance to water vapor oscillated repeatedly in red kidney bean, Phaseolus vulgaris L., plants transferred from a natural photoperiod to constant light. In a gas exchange system with automatic regulation of selected environmental and physiological variables, assimilation and conductance oscillated with a free-running period of approximately 24.5 hours. The rhythms in carbon assimilation and stomatal conductance were closely coupled and persisted for more than a week under constant conditions. A rhythm in assimilation occurred when either ambient or intercellular CO2 partial pressure was held constant, demonstrating that the rhythm in assimilation was not entirely the result of stomatal effects on CO2 diffusion. Rhythms in assimilation and conductance were not expressed in plants grown under constant light at a constant temperature, demonstrating that the rhythms did not occur spontaneously but were induced by an external stimulus. In plants grown under constant light with a temperature cycle, a rhythm was entrained in stomatal conductance but not in carbon assimilation, indicating that the oscillators driving the rhythms differed in their sensitivity to environmental stimuli.  相似文献   

10.
Summary Within the high arctic of Canada, Salix arctica, a dioecious, dwarf willow exhibits significant spatial segregation of the sexes. The overall sex ratio is female-biased and female plants are especially common in wet, higher nutrient, but lower soil temperature habitats. In contrast, male plants predominate in more xeric and lower nutrient habitats with higher soil temperatures that can be drought prone. Associated with the sex-specific habitat differences were differences in the seasonal and diurnal patterns of water use as measured by stomatal conductance to water vapor and the bulk tissue water relations of each gender. Within the wet habitats, female plants maintained higher rates of stomatal conductance (g) than males when soil and root temperatures were low (<4° C). In contrast, within the xeric habitats, male plants maintained higher g and had lower leaf water potentials leaf at low soil water potentials and a high leaf-to-air vapor pressure gradient (w) when compared to females. Female plants had more positive carbon isotope ratios than males indicating a lower internal leaf carbon dioxide concentration and possibly higher water use efficiency relative to males. Tissue osmotic and elastic properties also differed between the sexes. Male plants demonstrated lower tissue osmotic potentials near full tissue hydration and at the turgor loss point and a lower bulk tissue elastic modulus (higher tissue elasticity) than female plants. Males also demonstrated a greater ability to osmotically adjust on a diurnal basis than females. These properties allowed male plants to maintain higher tissue turgor pressures at lower tissue water contents and soil over the course of the day. The sex-specific distributional and ecophysiological characteristics were also correlated with greater total plant growth and higher fecundity of females in wet habitats, and males in xeric habitats respectively. The intersexual differences in physiology persisted in all habitats. These results and those obtained from growth chamber studies suggest that sex-specific differences have an underlying genetic basis. From these data we conjecture that selection maintaining the intersexual differences may be related to different costs associated with reproduction that can be most easily met through physiological specialization and spatial segregation of the sexes among habitats of differing conditions.  相似文献   

11.
The karst habitats of southwestern China are characterized by a highly heterogeneous distribution of water resources. We hypothesized that the clonal integration between connected ramets of the clonal vine Ficus tikoua was an important adaptive strategy to the patchy distribution of water resources in these habitats. We grew ramet pairs (each consisting of a parent and an offspring ramet) in both homogeneously and heterogeneously watered conditions. The offspring ramets were well-watered, whereas their connected parent ramets were randomly assigned to four water treatments: well-watered, mild water stress, moderate water stress, and severe water stress. Increasing water stress decreased leaf water potential, relative water content, net assimilation rate, maximum quantum yield of PSII (F v/F m), and biomass of the parent ramets. Subjecting the parents to water stress significantly increased root biomass and root mass ratio (RMR) of their offspring ramets. Exploitation of plentiful water resources through the increased adventitious roots connected to another soil patch permitted the complete restoration of water relations and photosynthetic capacity of offspring ramets after an initial depression. Water relations and gas exchange of the parents were not affected by the water supply to their connected offspring ramets, suggesting that offspring ramets hardly exported water to the stressed parents. However, net assimilation rate and proline content of the offspring ramets increased when they were connected to water-stressed parents. The compensatory photosynthetic responses of offspring ramets connected to stressed parents revealed an increasing trend as the experiment progressed. Morphological and physiological plasticity of F. tikoua in response to heterogeneous water resources allow them to adapt to karst habitats and be suitable candidates for vegetation restoration projects.  相似文献   

12.
Leaf diffusion resistance, illuminance, and transpiration   总被引:9,自引:3,他引:6  
Stepwise increases in fluorescent illuminance, imposed as a single variable in a controlled environment, induced progressive stomatal opening in 8 plant species, as evidenced by a consistent decrease in leaf diffusion resistance (RL), ranging from 15 to 70 sec cm−1 in darkness to about 1 sec cm−1 at approximately 40 kilolux. The minimum RL values were the same for the upper and the lower epidermis, provided that stomatal density was adequate. Saturation illuminance was not achieved in any species; extrapolation indicates that 50 kilolux would bring about full stomatal opening (RL ≤ 0.1 sec cm−1).

In 4 species, reasonable agreement was obtained in a controlled environment between transpiration as measured by weight loss and that calculated from determination of (a) the difference in water vapor density from leaf to air, (b) the boundary layer resistance, and (c) the leaf diffusion resistance. This result confirms the physical validity of the resistance measurement procedure.

  相似文献   

13.
A greenhouse experiment examined whether clonal integration improves photosynthesis of ramets of alligator weed [Alternanthera philoxeroides (Mart.) Griseb.], a widespread invasive clonal plant in China, in heterogeneous (He) nutrient habitats. The connected pairs of ramets experienced different nutrient levels [high homogeneous (Ho) nutrient, low Ho nutrient, and two He nutrient treatments]. Clonal integration significantly improved the net photosynthetic rate, stomatal conductance, transpiration rate, and minimal and maximal chlorophyll fluorescence of ramets of alligator weed in low nutrient condition. These characteristics may contribute to the success of the ramets of alligator weed in invading contrasting habitats. The clonal integration of the invasive clonal plants may contribute significantly to their invasiveness.  相似文献   

14.
Seasonal variations in photosynthesis and water relations parameters were quantified for Myrica cerifera, the dominant woody species on the barrier islands along the eastern shore of Virginia. From June through September of 1989, maximum values were 35 μmol m−-2 sec−-1 for net CO2 assimilation, 10.5 mm sec−-1 for stomatal conductance to water vapor diffusion, and –0.3 MPa for xylem pressure potential at the field site on Hog Island. Midday minimum xylem pressure potential often was less than –1.5 MPa. Data from the field and measurements on glasshouse plants indicated that stomatal opening and photosynthesis were sensitive to leaf water potential (<–0.8 MPa) and the leaf-to-air humidity deficit (>1.5 kPa). Using meteorological data and derived photosynthetic responses, predictions indicated that M. cerifera photosynthesis would have been limited at the field site due to nonoptimal air temperatures and humidity deficits on at least 90% of the days during the relatively wet summer of 1989. By comparison, these parameters were expected to limit photosynthesis on all but 2 d, or more than 98% of the time during the relatively dry summer of 1990. The sensitivity of Myrica cerifera to atmospheric humidity and plant moisture status may explain the distributional preference for the more mesic swale sites of barrier islands.  相似文献   

15.
Clonal plants often establish descendent ramets in sites with contrasting presence of favourable and unfavourable factors. Connections between ramets allow translocation of essential resources from established ramets to developing ramets and, as consequence, integration confers net benefits to ramets growing under unfavourable conditions. Therefore, integrated ramets may survive in habitat patches that would be lethal to independent ramets or non-clonal plants. This experiment aimed to investigate the physiological and morphological responses of the clonal plant Fragaria vesca growing in heterogeneous substrate with patches of contrasting quality (i.e. uncontaminated or heavy-metal-contaminated). We observed that parents reduced their photosynthetic efficiencies and growth as consequence of maintaining their offspring. This cost did not affect survival of the parents. Physiological integration brings about benefits to offspring ramets growing both at uncontaminated and heavy-metal-contaminated soils. The benefits of integration were detected in both physiological and morphological traits, enhancing the survivorship of offspring ramets in the Cu-polluted soils. We conclude that integration improves the performance of developing ramets of F. vesca growing in heavy-metal-contaminated habitats, allowing clone systems to overcome the establishment risks and maintain their presence in these less favourable sites.  相似文献   

16.
Summary Kudzu occurs in a variety of habitats in the southeastern United States. It is most common in exposed, forest edge sites and road cuts where it forms an extensive ground canopy as well as a canopy overtopping nearby trees, but it can also be found in completely open fields and deeply shaded sites within a forest. Microclimate, stomatal conductance, leaf water potential and photosynthetic responses to light, temperature and humidity were measured in two contrasting microhabitats on Pueraria lobata, kudzu. Midsummer leaf temperatures and leaf-to-air water vapor deficits for plants growing in an exposed site were significantly greater than for those in a shaded site, exceeding 35° C and 50 mmol mol-1, respectively. Maximum stomatal conductance exceeded 400 mmol m-2 s-1 in exposed leaves during peak vegetative growth. Stomatal conductance in shaded leaves was approximately half the value measured in exposed leaves on any particular dya. Maximum photosynthetic carbon uptake was also higher in leaves growing in exposed sites compared to leaves in shaded sites, exceeding 18.7 and 14.0 mol m-2 s-1, respectively. Photosynthesis, stomatal conductance and intercellular CO2 concentration decreased dramatically in response to increasing water vapor deficit for leaves from both sites. However, transpiration showed an initial increase at intermediate water vapor deficits, leveling off or even decreasing at higher values. Leaf water potential demonstrated marked diurnal variation, but remained constant over a wide range of transpirational water fluxes. This latter feature, combined with microenvironmental modification through rapid leaf orientation and pronounced stomatal responses to water vapor deficits may represent important adaptive responses in the exploitation of a diverse array of habitats by kudzu.  相似文献   

17.
The possible link between stomatal conductance (gL), leaf water potential ( Ψ L) and xylem cavitation was studied in leaves and shoots of detached branches as well as of whole plants of Laurus nobilis L. (Laurel). Shoot cavitation induced complete stomatal closure in air‐dehydrated detached branches in less than 10 min. By contrast, a fine regulation of gL in whole plants was the consequence of Ψ L reaching the cavitation threshold ( Ψ CAV) for shoots. A pulse of xylem cavitation in the shoots was paralleled by a decrease in gL of about 50%, while Ψ L stabilized at values preventing further xylem cavitation. In these experiments, no root signals were likely to be sent to the leaves from the roots in response to soil dryness because branches were either detached or whole plants were growing in constantly wet soil. The stomatal response to increasing evaporative demand appeared therefore to be the result of hydraulic signals generated during shoot cavitation. A negative feedback link is proposed between gL and Ψ CAV rather than with Ψ L itself.  相似文献   

18.
Ming Dong 《Oecologia》1995,101(3):282-288
Morphological responses to light and effects of physiological integration on local morphological responses are examined for Hydrocotyle vulgaris and Lamiastrum galeobdolon, stoloniferous herbs from open fenlands and forest understoreys, respectively. An assessment was made of whether these clonal herbs of similar morphology but from contrasting habitats show different foraging behaviour for light. In a garden experiment, the plants wer subjected to four levels of light availability, and to a split treatment in which the primary stolons grew along the border of patches of the two intermediate light levels. In this treatment the plant parts on opposite sides of the primary stolons were in contrasting light environments. Petiole extension was more responsive to light conditions in Hydrocotyle than in Lamiastrum, while the opposite was true for leaf area. Both species showed similar responses in stolon internode length and specific leaf area (SLA). Integration did not significantly modify local responses in stolon internode length in either species. Local responses in petiole length, leaf area and SLA of Hydrocotyle ramets were not significantly affected by physiological integration, except for the SLA of ramets in high light which was evened out by integration. In contrast, in Lamiastrum, local responses in petiole length, leaf area and SLA of many ramets in the shaded and/or light patch were significantly evened out by integration. As a result, interconnected ramets in patches of different light supply developed very different morphologies in Hydrocotyle, but not in Lamiastrum. The results indicate that the species differed in ramet morphological responses to light intensity as well as in effects of integration on local morphological responses, and suggest that species from different habitats show different foraging behaviour for light.  相似文献   

19.
荒漠条件下甘草气孔振荡的水被动证据   总被引:12,自引:0,他引:12  
生长在中国西北干旱荒漠的甘草(Glycyrrhiza inflata Batalin),当白天大气水蒸汽压差(VPD)高于1kPa时,其气孔导度随时间的变化趋势为从稳态转为振荡态。通过茎木质部注射代谢抑制剂(NaN3或羰基氰化物-间-氯苯腙(CCCP)使气孔导度有些微降低,但是并不能显改变气孔振荡强度(振幅/平均值)。气孔振荡强度与VPD和根阻力显相关,但与呼吸速度无明显相关,在荒漠条件下,当VPD大于0.8kPa和至少存在1/4全根阻力的条件下才能出现气孔振荡。结果说明荒漠干旱条件诱发的甘草气孔振荡可能主要是一种水被动过程 。  相似文献   

20.
Stomatal conductance was found to change from steady-state to a state of oscillations during daytime when vapour pressure deficit (VPD) increased to a value of 1 kPa in Glycyrrhiza inflata Batalin grown under the conditions of arid desert in north-west China. The injected metabolic inhibitors (NaN 3 or carbonyl cyanide-m-chlorophenyl-hydrazone (CCCP)) slightly reduced the stomatal conductance but did not significantly decrease the intensity of stomatal oscillations (amplitude/average). The oscillation intensity was found to be significantly correlated with VPD and root resistance, but not with the respiration rate. There might exist a minimum threshold of VPD (0.8 kPa) and root resistance (1/4 relative value) that induced stomatal oscillations. These results suggested that stomatal oscillations induced by atmospheric drought stress and root resistance were mainly a type of hydropassive movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号