首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 533 毫秒
1.
Neurite extension and retraction are very important processes in the formation of neuronal networks. A strategy for fostering axonal regrowth/regeneration of injured adult neurons is attractive therapeutically for various diseases such as traumatic brain injury, stroke and Alzheimer's disease. The Rho family of small GTPases, including Rac and Cdc42 have been shown to be involved in promoting neurite outgrowth. On the other hand, activation of RhoA induces collapse of growth cone and retraction of neurites. Rho‐associated kinase (ROCK) an effector molecule of RhoA, is downstream of a number of axonal outgrowth and growth cone collapse inhibition mechanisms. In the present study, we sought to identify the role of ROCK in neurite outgrowth in PC12 cells. Y27632, a specific inhibitor of ROCK, induced a robust increase in neurite outgrowth in these cells within 24–48 h as visualized by phase contrast microscopy. Staining with FITC‐tubulin or phalloidin show extended neurites in PC12 cells treated with Y27632, comparable to that with 100 ng/mL of NGF. Assessment of other biochemical markers of neurite outgrowth such as GAP43, neurofilament and tyrosine hydroxylase phosphorylation further indicates that inhibition of ROCK in PC12 cells causes differentiation of these cells to a neuronal phenotype.  相似文献   

2.
The Rho family of small GTPases has been shown to be involved in the regulation of neuronal morphology, and Rac and Rho exert antagonistic actions in neurite formation. In this study, we have examined the cross-talk between Rac and Rho in relation to the nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. NGF induced a rapid activation of Rac1 and suppression of RhoA activity. Constitutively active RhoA, RhoA(V14), or constitutively active Galpha(12)-induced endogenous RhoA activation inhibited the NGF-induced Rac1 activation without any effect on the NGF-induced extracellular signal-regulated kinase activation. Moreover, Y-27632, an inhibitor of Rho-associated kinase, completely abolished the RhoA-induced down-regulation of the NGF-induced Rac1 activation. We also revealed that NGF induced a rapid recruitment of Rac1 to the cell surface protrusion sites and formed filamentous actin-rich protrusions. Activation of RhoA and Rho-associated kinase formed a thick ringlike structure of cortical actin filaments at the cell periphery and then inhibited the NGF-induced recruitment of Rac1 to protrusions. These results indicate that RhoA down-regulates the NGF- induced Rac1 activation through Rho-associated kinase, inhibiting the neurite formation.  相似文献   

3.
Activation of RhoA prevents NGF-induced outgrowth and causes retraction of neurites in neuronal cells, including PC12 cells. Despite its inhibitory effect on neurite outgrowth, NGF activates GTP loading of and effector binding to RhoA, setting up an apparent contradiction. According to the molecular switch hypothesis of GTPase function GTP-loading of RhoA should be sufficient to activate its effectors uniformly. However, when monitoring NGF-induced binding of GTP-RhoA to multiple targets, we noted differential interactions with its effectors. We found that NGF elicits a protein kinase A-mediated phosphorylation of RhoA on serine(188), which renders it unable to bind to Rho-associated kinase (ROK), whereas it retains the ability to interact with other RhoA targets including rhotekin, mDia-1 and PKN. We show in vitro and in vivo that phosphorylation of serine(188) represents an additional switch, capable of directing signals among effector pathways. In the context of PC12 cell differentiation, NGF-induced phosphorylation of RhoA on serine(188) prevents it from interacting with ROK, which would otherwise block neurite outgrowth. Transfection of RhoA(S188A) mutant into PC12 cells prevents NGF-induced neurite outgrowth, just like constitutively activated RhoA(14V) does, indicating the requirement of this phosphorylation site. Replacement of serine(188) with the phosphomimetic glutamate residue in RhoA(V14/S188E) selectively impairs interaction with ROK and when transfected into PC12 cells restores NGF-induced neurite outgrowth. Therefore, phosphorylation of serine(188) may serve as a novel secondary switch of RhoA capable of overriding GTP-binding-elicited effector activation to a subset of targets such as ROK, which interact with the C-terminus of RhoA.  相似文献   

4.
The formation and directional guidance of neurites involves dynamic regulation of Rho family GTPases. Rac and Cdc42 promote neurite outgrowth, whereas Rho activation causes neurite retraction. Here we describe a role for collapsin response mediator protein (Crmp-2), a neuronal protein implicated in axonal outgrowth and a component of the semaphorin 3A pathway, in switching GTPase signaling when expressed in combination with either dominant active Rac or Rho. In neuroblastoma N1E-115 cells, co-expression of Crmp-2 with dominant active RhoA V14 induced Rac morphology, cell spreading and ruffling (and the formation of neurites). Conversely, co-expression of Crmp-2 with dominant active Rac1 V12 inhibited Rac morphology, and in cells already expressing Rac1 V12, Crmp-2 caused localized peripheral collapse, involving Rho (and Cdc42) activation. Rho kinase was a pivotal regulator of Crmp-2; Crmp-2 phosphorylation was required for Crmp-2/Rac1 V12 inhibition, but not Crmp-2/RhoA V14 induction, of Rac morphology. Thus Crmp-2, regulated by Rho kinase, promotes outgrowth and collapse in response to active Rho and Rac, respectively, reversing their usual morphological effects and providing a mechanism for dynamic modulation of growth cone guidance.  相似文献   

5.
6.
The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and implicate this pseudophosphatase as a regulator of neuronal differentiation.  相似文献   

7.
We previously demonstrated that phospholipase D (PLD) expression and PLD activity are upregulated during neuronal differentiation. In the present study, employing neural stem cells from the brain cortex of E14 rat embryos, we investigated the role of Rho family GTPases in PLD activation and in neurite outgrowth of neural stem cells during differentiation. As neuronal differentiation progressed, the expression levels of Cdc42 and RhoA increased. Furthermore, Cdc42 and PLD1 were mainly localized in neurite, whereas RhoA was localized in cytosol. Co-immunoprecipitation revealed that Cdc42 was bound to PLD1 during differentiation, whereas RhoA was associated with PLD1 during both proliferation and differentiation. These results indicate that the association between Cdc42 and PLD1 is related to neuronal differentiation. To examine the effect of Cdc42 on PLD activation and neurite outgrowth, we transfected dominant negative Cdc42 (Cdc42N17) and constitutively active Cdc42 (Cdc42V12) into neural stem cells, respectively. Overexpression of Cdc42N17 decreased both PLD activity and neurite outgrowth, whereas co-transfection with Cdc42N17 and PLD1 restored them. On the other hand, Cdc42V12 increased both PLD activity and neurite outgrowth, suggesting that active state of Cdc42 is important in upregulation of PLD activity which is responsible for the increase of neurite outgrowth.  相似文献   

8.
The rat pheochromocytoma cell line PC12 has been widely used as a model to study neuronal differentiation. PC12 cells give rise to neurites in response to basic fibroblast growth factor (bFGF). However, it is unclear whether bFGF promotes neurite outgrowth by inducing RhoA inactivation, and a mechanism for RhoA inactivation in PC12 cells in response to bFGF has not been reported. Lysophosphatidic acid (LPA) treatment and the expression of constitutively active (CA)‐RhoA (RhoA V14) impaired neurite formation in response to bFGF, while Tat‐C3 exoenzyme and the expression of dominant negative (DN)‐RhoA (RhoA N19) stimulated neurite outgrowth. GTP‐bound RhoA levels were reduced in response to bFGF, which suggests that the inactivation of RhoA is essential to neurite outgrowth in response to bFGF. To investigate the mechanism of RhoA inactivation, this study examined the roles of p190RhoGAP and Rap‐dependent RhoGAP (ARAP3). DN‐p190RhoGAP prevented neurite outgrowth, while WT‐p190RhoGAP and Src synergistically stimulated neurite outgrowth; these findings suggest that bFGF promotes the inactivation of RhoA and subsequent neurite outgrowth through p190RhoGAP and Src. Furthermore, DN‐Rap1 and DN‐ARAP3 reduced neurite formation in PC12 cells. These results suggest that RhoA is likely to be inactivated by p190RhoGAP and ARAP3 during neurite outgrowth in response to bFGF. J. Cell. Physiol. 224: 786–794, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
In PC12 rat pheochromocytoma cells, nerve growth factor (NGF)-induced neuronal differentiation is blocked by constitutively active dominant mutants of RhoA but augmented by negative ones, suggesting a not yet elucidated inhibitory signaling link between NGF receptors and RhoA. Here we show that NGF treatment rapidly translocates RhoA from the plasma membrane to the cytosol and simultaneously decreases RhoA affinity to its target Rho-associated kinase (ROK), a key mediator of neurite outgrowth. This effect was transient, because after 2 days of NGF treatment, RhoA relocated from the cytosol to the plasma membrane, and its GTP loading returned to a level found in undifferentiated cells. Inhibition of RhoA is mediated by activation of the TrkA receptor, because NGF failed to induce RhoA translocation and inhibition of ROK binding in nnr5 cells that lack TrkA, whereas the inhibition was reconstituted in receptor add-back B5 cells. In MM17-26 cells, which due to expression of dominant negative Ras do not differentiate, NGF-stimulated transient RhoA inhibition was unaffected. The inhibitory pathway from TrkA to RhoA involves phosphatidylinositol-3-kinase (PI3K), because the inhibitors LY294002 or wortmannin prevented NGF-induced RhoA translocation and increased RhoA association with ROK. Furthermore, inhibition of PI3K significantly reduced NGF- mediated Rac1 activation, whereas dominant negative Rac1 abolished the inhibitory signaling to RhoA. Taken together, these data indicate that NGF-mediated activation of TrkA receptor stimulates PI3K, which in turn increases Rac1 activity to induce transient RhoA inactivation during the initial phase of neurite outgrowth.  相似文献   

10.
During differentiation neurons increase phospholipid biosynthesis to provide new membrane for neurite growth. We studied the regulation of phosphatidylcholine (PC) biosynthesis during differentiation of two neuronal cell lines: PC12 cells and Neuro2a cells. We hypothesized that in PC12 cells nerve growth factor (NGF) would up-regulate the activity and expression of the rate-limiting enzyme in PC biosynthesis, CTP:phosphocholine cytidylyltransferase (CT). During neurite outgrowth, NGF doubled the amount of cellular PC and CT activity. CTbeta2 mRNA increased within 1 day of NGF application, prior to the formation of visible neurites, and continued to increase during neurite growth. When neurites retracted in response to NGF withdrawal, CTbeta2 mRNA, protein, and CT activity decreased. NGF specifically activated CTbeta2 by promoting its translocation from cytosol to membranes. In contrast, NGF did not alter CTalpha expression or translocation. The increase in both CTbeta2 mRNA and CT activity was inhibited by U0126, an inhibitor of mitogen-activated kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). In Neuro2a cells, retinoic acid significantly increased CT activity (by 54%) and increased CTbeta2 protein, coincident with neurite outgrowth but did not change CTalpha expression. Together, these data suggest that the CTbeta2 isoform of CT is specifically up-regulated and activated during neuronal differentiation to increase PC biosynthesis for growing neurites.  相似文献   

11.
Addition of the bioactive phospholipid lysophosphatidic acid (LPA) or a thrombin receptor-activating peptide (TRP) to serum-starved N1E-115 or NG108-15 neuronal cells causes rapid growth cone collapse, neurite retraction, and transient rounding of the cell body. These shape changes appear to be driven by receptor-mediated contraction of the cortical actomyosin system independent of classic second messengers. Treatment of the cells with Clostridium botulinum C3 exoenzyme, which ADP-ribosylates and thereby inactivates the Rho small GTP-binding protein, inhibits LPA- and TRP-induced force generation and subsequent shape changes. C3 also inhibits LPA-induced neurite retraction in PC12 cells. Biochemical analysis reveals that the ADP-ribosylated substrate is RhoA. Prolonged C3 treatment of cells maintained in 10% serum induces the phenotype of serum-starved cells, with initial cell flattening being followed by neurite outgrowth; such C3-differentiated cells fail to retract their neurites in response to agonists. We conclude that RhoA is essential for receptor-mediated force generation and ensuing neurite retraction in N1E-115 and PC12 cells, and that inactivation of RhoA by ADP-ribosylation abolishes actomyosin contractility and promotes neurite outgrowth.  相似文献   

12.
The c-fes locus encodes a cytoplasmic protein-tyrosine kinase (Fes) previously shown to accelerate nerve growth factor (NGF)-induced neurite outgrowth in rat PC12 cells. Here, we investigated the role of the Rho family small GTPases Rac1 and Cdc42 in Fes-mediated neuritogenesis, which have been implicated in neuronal differentiation in other systems. Fes-induced acceleration of neurite outgrowth in response to NGF treatment was completely blocked by the expression of dominant-negative Rac1 or Cdc42. Expression of a kinase-active mutant of Fes induced constitutive relocalization of endogenous Rac1 to the cell periphery in the absence of NGF, and led to dramatic actin reorganization and spontaneous neurite extension. We also investigated the breakpoint cluster region protein (Bcr), which possesses the Dbl and PH domains characteristic of guanine nucleotide exchange factors for Rho family GTPases, as a possible link between Fes, Rac/Cdc42 activation, and neuritogenesis. Coexpression of a GFP-Bcr fusion protein containing the Fes binding and tyrosine phosphorylation sites (amino acids 162-413) completely suppressed neurite outgrowth triggered by Fes. Conversely, coexpression of full-length Bcr with wild-type Fes in PC12 cells induced NGF-independent neurite formation. Taken together, these data suggest that Fes and Bcr cooperate to activate Rho family GTPases as part of a novel pathway regulating neurite extension in PC12 cells, and provide more evidence for an emerging role for Fes in neuronal differentiation.  相似文献   

13.
The effects of several kinds of microbial extracellular glycolipids on neurite initiation in PC12 cells were examined. Addition of mannosylerythritol lipid-A (MEL-A), MEL-B, and sophorose lipid (SL) to PC12 cells caused significant neurite outgrowth. Other glycolipids, such as polyol lipid (PL), rhamnose lipid (RL), succinoyl trehalose lipid-A (STL-A) and STL-B caused no neurite-initiation. MEL-A increased acetylcholine esterase (AChE) activity to an extent similar to nerve growth factor (NGF). However, MEL-A induced one or two long neurites from the cell body, while NGF induced many neurites. In addition, MEL-A-induced differentiation was transient, and after 48 h, percentage of cells with neurites started to decrease in contrast to neurons induced by NGF, which occurred in a time-dependent manner. MEL-A could induce neurite outgrowth after treatment of PC12 cells with an anti-NGF receptor antibody that obstructed NGF action. These results indicate that MEL-A and NGF induce differentiation of PC12 cells through different mechanisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The Rho family of small GTPases has been implicated in cytoskeletal reorganization and subsequent morphological changes in various cell types. Among them, Rac and Cdc42 have been shown to be involved in neurite outgrowth in neuronal cells. In this study, we examined the role of RhoG, another member of Rho family GTPases, in nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Expression of wild-type RhoG in PC12 cells induced neurite outgrowth in the absence of NGF, and the morphology of wild-type RhoG-expressing cells was similar to that of NGF-differentiated cells. Constitutively active RhoG-transfected cells extended short neurites but developed large lamellipodial or filopodial structures at the tips of neurites. RhoG-induced neurite outgrowth was inhibited by coexpression with dominant-negative Rac1 or Cdc42. In addition, expression of constitutively active RhoG elevated endogenous Rac1 and Cdc42 activities. We also found that the NGF-induced neurite outgrowth was enhanced by expression of wild-type RhoG whereas expression of dominant-negative RhoG suppressed the neurite outgrowth. Furthermore, constitutively active Ras-induced neurite outgrowth was also suppressed by dominant-negative RhoG. Taken together, these results suggest that RhoG is a key regulator in NGF-induced neurite outgrowth, acting downstream of Ras and upstream of Rac1 and Cdc42 in PC12 cells.  相似文献   

15.
We report here the possible involvement of a new protease in neurite initiation by PC12h cells. Addition of a leupeptin analogue (Ac-Leu-Leu-Nle-al, ALLNal) to PC12h cells on culture plates coated with collagen type I caused de novo neurite outgrowth. Other protease inhibitors (Ac-Leu-Leu-Met-al, leupeptin, E64c, E64d, soybean trypsin inhibitor, hirudin, aprotinin, diisofluorophosphate, 6-aminocapric acid, and pepstatin A) could not mimic this neurite-initiating action. ALLNal induced the initiation of one or two long neurites from the cell body, and increased the cellular level of acetylcholinesterase to an extent similar to nerve growth factor (NGF). However, ALLNal-induced neuritogenesis is different from that induced by NGF, in which many neurites are induced from a single cell body. In addition, in contrast to neurons induced by NGF, which survive for a long time, ALLNal-induced differentiation was transient, and after 48 h percentage of cells bearing neurites started to decrease. After about 120 h exposure to ALLNal, neurites had mostly disappeared and the acetylcholinesterase activity level was not as great as that produced by NGF. These results provide evidence that ALLNal and NGF elicit neurite initiation by different mechanisms, and suggest the existence of a regulatory system of neuronal differentiation through specific protease-protease inhibitor interaction.  相似文献   

16.
A rat pheochromocytoma (PC12) cell line (designated MMTV-M17-5) expressing a dominant inhibitory mutant Ha-ras (Ha-ras Asn 17) protein was used to study nerve growth factor (NGF) induced neurite regeneration. Expression of the mutant p21 completely blocked NGF stimulated process formation in these cells. In contrast, neurite outgrowth induced by NGF treatment of primed MMTV-M17-5 cells was not significantly affected by the presence of Ha-ras Asn 17 protein. These observations suggest that, while ras function is required for NGF induced neuronal differentiation of PC12 cells, it is not needed to mediate NGF stimulated neurite regeneration.  相似文献   

17.
The rat pheochromocytoma PC12 cell line has been an invaluable model system for studying neuritogenesis. Nerve growth factor (NGF) elicits multiple aspects of neurite outgrowth in PC12 cells. It is therefore difficult to dissect and assign an individual signaling pathway to each stage of neuritogenesis. We have recently reported the isolation of a variant PC12 cell line, PC12-N1 (N1), which spontaneously extends neuritic processes and exhibits an increased sensitivity to NGF. Here, we show that, under different culture conditions, the cells display three distinct phases of neuritogenesis consisting of neurite initiation, rapid neurite elongation, and a maturation process characterized by the thickening of neurites and increase in cell soma sizes. We demonstrate that signaling through ERK, but not p38 or JNK, is required for the spontaneous neurite initiation and extension. Treatment with low concentrations of NGF induces rapid neurite elongation without affecting neurite branching and cell soma sizes. Such a rapid neurite outgrowth can be blocked by the inhibition of ERK, but not JNK, activities. In the presence of higher concentrations of NGF, the N1 cells undergo further differentiation with many characteristics of mature neurons in culture, e.g. larger cell soma and numerous branches/connections. This process can be completely blocked by inhibiting ERK or JNK activities using specific inhibitors. These results suggest that ERK and JNK signals play different roles in neuritogenesis, and that JNK activity is essential in the late stages of neuritogenesis. Furthermore, our results demonstrate that signaling dosage is important in the activation of a specific pathway, leading to distinctive biological outcomes.  相似文献   

18.
The myotonic dystrophy kinase-related Cdc42-binding kinase (MRCKalpha) has been implicated in the morphological activities of Cdc42 in nonneural cells. Both MRCKalpha and the kinase-related Rho-binding kinase (ROKalpha) are involved in nonmuscle myosin light-chain phosphorylation and associated actin cytoskeleton reorganization. We now show that in PC12 cells, overexpression of the kinase domain of MRCKalpha and ROKalpha resulted in retraction of neurites formed on nerve growth factor (NGF) treatment, as observed with RhoA. However, introduction of kinase-dead MRCKalpha did not result in NGF-independent neurite outgrowth as observed with dominant negative kinase-dead ROKalpha or the Rho inhibitor C3. Neurite outgrowth induced by NGF or kinase-dead ROKalpha was inhibited by dominant negative Cdc42(N17), Rac1(N17), and the Src homology 3 domain of c-Crk, indicating the participation of common downstream components. Neurite outgrowth induced by either agent was blocked by kinase-dead MRCKalpha lacking the p21-binding domain or by a minimal C-terminal regulatory region consisting of the cysteine-rich domain/pleckstrin homology domain plus a region with homology to citron. The latter region alone was an effective blocker of NGF-induced outgrowth. These results suggest that although ROKalpha is involved in neurite retraction promoted by RhoA, the related MRCKalpha is conversely involved in neurite outgrowth promoted by Cdc42 and Rac.  相似文献   

19.
Abstract: When PC12 cells are primed with nerve growth factor (NGF) for periods of ≥1 week, they acquire the ability to regenerate neurites rapidly in response to NGF. It is not known how NGF promotes this regeneration, but it does not require ongoing RNA synthesis. Previous studies have suggested that NGF directs the accumulation of precursor molecules that are rapidly assembled to form the regenerated neurites. To address the nature of these precursor molecules, we have treated PC12 cells with macromolecular synthesis inhibitors during the priming and regeneration phases of neurite growth. Here we show that NGF promotes neurite regeneration by inducing the synthesis of new proteins. These proteins are encoded by short-lived mRNAs that are generated during the NGF priming period. The isolation and identification of these mRNAs will allow a further understanding of how NGF promotes neurite regeneration.  相似文献   

20.
The biochemical mechanisms involved in neurite outgrowth in response to nerve growth factor (NGF) have yet to be completely resolved. Several recent studies have demonstrated that protein kinase activity plays a critical role in neurite outgrowth. However, little information exists about the role of protein phosphatases in the process. In the present study, okadaic acid, a phosphatase inhibitor (specific for types 2A and 1) and tumor promoter, was used to investigate the role of protein phosphatases in neurite outgrowth in PC12 cells. PC12 cells cultured in the presence of 50 ng/ml of NGF started to extend neurites after 1 day. After 3 days, 20-25% of the cells had neurites. Okadaic acid inhibited the rate of neurite outgrowth elicited by NGF with an IC50 of approximately 7 nM. This inhibition was rapidly reversed after washout of okadaic acid. Okadaic acid also enhanced the neurite degeneration of NGF-primed PC12 cells, indicating that continual phosphatase activity is required to maintain neurites. Taken together, these results reveal the presence of an okadaic acid-sensitive pathway in neurite outgrowth and imply that protein phosphatase plays a positive role in regulating the neuritogenic effects of NGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号