首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Specific stress treatments (sucrose starvation, alone or combined with a heat shock) applied to isolated tobacco (Nicotiana tabacum L.) microspores irreversibly blocked normal gametophytic development and induced the formation of embryogenic cells, which developed subsequently into pollen-derived embryos by culture at 25°C in a sugar-containing medium. A cold shock at 4°C did not inhibit microspore maturation in vitro and did not induce cell division activity, even when combined with a starvation treatment. In the absence of sucrose, microspores isolated in the G1 phase of the cell cycle replicated their DNA and accumulated in G2. Late microspores underwent miotosis during the first day of culture which resulted in a mixed population of bicellular pollen grains and uninucleate microspores, both embryogenic. After the inductive stress treatments the origin of the first multicellular structures, formed in the sugar-containing medium, could be traced to divisions of the microspore cell or divisions of the vegetative cell of bicellular pollen, indicating that the symmetry of microspore mitosis in vitro is not important for embryogenic induction. These results represent a step forward towards a unified model of induction of embryogenesis from microspores/pollen which, within a relatively wide developmental window, are competent to deviate from normal gametophytic development and initiate the alternative sporophytic programme, in response to specific stress signals.Abbreviation DAPI 4,6-diamidino-2-phenylindole We acknowledge the help of Monica Boscaiu and Zarko Hrzenjak with the artwork, and Michaela Braun-Mayer for growing the tobacco plants. This project was financed by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung, grant S6003-BIO.  相似文献   

2.
Uninucleate microspores of Triticum aestivum cv. Pavon can be induced in vitro to alter their development to produce embryoids rather than pollen. Microspores expressed their embryogenic capacity through one of two division pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen grain. Here the generative cell detached from the intine, migrated to a central position in the pollen grain, and underwent a second haploid mitosis as the vegetative cell divided to give rise to the embryoid. In the second pathway, the first division was symmetric and both nuclei divided repeatedly to form the embryoid. This comparative analysis of normal pollen ontogeny and induced embryogenesis provided no evidence for the existence of predetermined embryogenic microspores in vitro or in vivo. Instead, microspores are induced at the time of culture, and embryogenesis involves continued metabolic activity associated with the gradual cessation of the gametophytic pathway and a redifferentiation into the sporophytic pathway. In conjunction with a previous study, it appears that embryogenic induction of wheat microspores involves switching off gametophytic genes and derepressing sporophytic genes.  相似文献   

3.
Anthers of Capsicum annuum L. were cultured on Murashige and Skoog (MS) medium containing 0.1 mg l−1 NAA and 0.1 mg l−1 kinetin. Inoculated anthers were subjected to 31 °C and development of microspores in anthers of varying stages was observed cytologically using 4′-6-diamidino-2-phenylindol-2HCl (DAPI). Pepper was characterized by a strong asynchrony of pollen development within a single anther. Percentage of pollen at different stages changed with the culture period, and the proportion of dead pollen increased drastically from day 2 after culture. Microspores that were cultured at the late-uninucleate stage followed one of two developmental pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen. Embryogenic pollen was formed by repeated divisions of the vegetative nucleus. In the second pathway, which occurred in fewer microspores, the first division was symmetric and both nuclei divided repeatedly to form embryogenic pollen. In early-bicellular pollen, sporophytic pollen was produced through division of the vegetative nucleus. In mid-bicellular pollen, the generative nucleus may undergo division to produce two or more sperm-like nuclei. However, division of the generative nucleus alone to form the embryo was never observed. The anther stage optimal for embryo production contained a large proportion (>75%) of early-binucleate pollen. Associations were found among the percentage of early-binucleate pollen, the frequency of embryogenic multinucleate pollen, and the yield of pollen embryos.  相似文献   

4.
Summary Brassica napus cv. Topas microspores isolated and cultured near the first pollen mitosis and subjected to a heat treatment develop into haploid embryos at a frequency of about 20%. In order to obtain a greater understanding of the induction process and embryogenesis, transmission electron microscopy was used to study the development of pollen from the mid-uninucleate to the bicellular microspore stage. The effect of 24 h of high temperature (32.5 °C) on microspore development was examined by heat treating microspore cultures or entire plants. Mid-uninucleate microspores contained small vacuoles. Late-uninucleate vacuolate microspores contained a large vacuole. The large vacuole of the vacuolate stage was fragmented into numerous small vacuoles in the late-uninucleate stage. The late-uninucleate stage contained an increased number of ribosomes, a pollen coat covering the exine and a laterally positioned nucleus. Prior to the first pollen mitosis the nucleus of the lateuninucleate microspore appeared to be appressed to the plasma membrane; numerous perinuclear microtubules were observed. Microspores developing into pollen divided asymmetrically to form a large vegetative cell with amyloplasts and a small generative cell without plastids. The cells were separated by a lens-shaped cell wall which later diminished. At the late-bicellular stage the generative cell was observed within the vegetative cell. Starch and lipid reserves were present in the vegetative cell and the rough endoplasmic reticulum and Golgi were abundant. The microspore isolation procedure removed the pollen coat, but did not redistribute or alter the morphology of the organelles. Microspores cultured at 25 °C for 24 h resembled late-bicellular microspores except more starch and a thicker intine were present. A more equal division of microspores occurred during the 24 h heat treatment (32.5 °C) of the entire plant or of cultures. A planar wall separated the cells of the bicellular microspores. Both daughter cells contained plastids and the nuclei were of similar size. Cultured embryogenie microspores contained electron-dense deposits at the plasma membrane/cell wall interface, vesicle-like structures in the cell walls and organelle-free regions in the cytoplasm. The results are related to embryogenesis and a possible mechanism of induction is discussed.Abbreviations B binucleate - LU late uninucleate - LUV late uninucleate vacuolate - M mitotic - MU mid-uninucleate - RER rough endoplasmic reticulum - TEM transmission electron micrograph  相似文献   

5.
Summary Lucerne (alfalfa —Medicago sativa) pollen, cultured at the late unicellular stage, followed one of two developmental pathways: (1) A pathway involving symmetric mitosis which produces pollen containing two vegetative (2 V) or two generative (2 G) pollen. This morphology was only observed in culture, and pollen which followed this developmental path is defined as non-physiological. Occasionally the formation of multi-nucleate pollen grains containing from 4–9 cells were observed. Sustained divisions were not observed. (2) The production of bicellular (V+G) pollen followed by tricellular (V+2G) pollen. Since these types of grains are encountered during development in vivo, pollen following this developmental pathway is defined as physiological. The proportion of pollen that divided was enhanced by a cold treatment at 4°C for one week, prior to culture. The ratio of non-physiological (i.e., 2V or 2G) to physiological pollen (G+V or 2G+V) was found to be affected by the nature of the osmoticum in the medium. Media containing maltose or melibiose gave higher proportions of non-physiological pollen than media containing glucose or sucrose.Culture of detached anthers favoured the formation of 2G pollen whereas culture of whole buds favoured the development of 2V pollen. The ratio of non-physiological to physiological pollen after 1 week of culture was used as a criterion for identifying protocols and media which may be more suitable for inducing sustained cell division in lucerne microspores.  相似文献   

6.
 Until now it has been considered that in rape seed (Brassica napus) only late uninucleate microspores and early bicellular pollen are competent for induction of in vitro embryogenesis. Here we describe that pollen isolated at the late bicellular stage can also be induced to undergo embryogenesis. By the application of an additional short and more severe heat stress treatment, DNA synthesis was initiated in both generative and vegetative nuclei, but only vegetative cells were able to complete the cell cycle and to divide further. The ability of late bicellular pollen to respond to embryogenic induction treatment was accompanied by rearrangements of the microtubulular cytoskeleton and by the nuclear localization of 70 kDa heat shock proteins (HSP70). These findings confirm earlier observations that there is a strong correlation between the induction of embryogenesis and the synthesis and nuclear localization of HSP70. Received: 9 January 1997 / Revision accepted: 23 May 1997  相似文献   

7.
Summary The pattern of RNA synthesis during maturation and germination of pollen grains ofHyoscyamus niger was studied using3H-uridine autoradiography. Incorporation of label during pollen maturation was periodic with peak RNA synthesis occurring in the uninucleate, nonvacuolate pollen grains and in the vegetative cell of the bicellular pollen grains. During the early stages of germination, isotope incorporation occurred predominantly in the nucleus of the vegetative cell with little or no incorporation in the generative cell. With the appearance of the pollen tube, incorporation of3H-uridine in the vegetative cell nucleus decreased and completely disappeared at later stages of germination. No incorporation of isotope was observed in the sperms formed in the pollen tube by the division of the generative cell. From a comparison of the results of this study with those of previous works on RNA synthesis during pollen embryogenesis in cultured anthers ofH. niger, it is concluded that in contrast to embryogenic development, there is no requirement for sustained RNA synthesis by the generative cell nucleus for normal gametophytic development.  相似文献   

8.
M. Sun  H. Kieft  C. Zhou  A. nvan Lammeren 《Protoplasma》1999,208(1-4):265-274
Summary This paper describes a procedure in which protoplasts are obtained from microspores and pollen of rapeseed to induce callus formation aided by a feeder cell system with embryogenic microspores. Microspores at late unicellular stage and pollen at early bicellular stage were isolated and precultured for 24 h at 32 °C before enzymatic treatment. Eleven enzymes were tested in various combinations and concentrations. The optimal enzyme combination was 1.0% cellulase, 0.8% pectinase, 0.3% macerozyme, and 0.02% pectolyase, in which 26.3% of the microspores released protoplasts. A successful co-culture system was set up by employing embryogenic microspores as feeder cells. To this end, microspores were cultured in a medium with high osmotic pressure at 32 °C. Up to 37% of the microspores exhibited cell division and embryos developed to the heart-shape stage without changing medium. Microspore protoplasts were cultured in Millicells surrounded by the embryogenic microspores as feeder. In growth-regulator-free medium 14.5% of the protoplasts divided but only formed budding-like multicellular structures. Only after pretreatment with 4 mg of 2,4-dichlorophenoxyacetic acid and 1 mg of naphthaleneacetic acid per liter protoplasts divided and formed microcalli. Pollen tubes or tubelike structures were not observed. The experiments reveal that selection of the specific developmental stage of microspores, which is a prerequisite for microspore embryogenesis, is also important in microspore protoplast culture. Compared to other methods used before, microculture fed with embryogenic microspores has obvious superiority.Abbreviations CPW basic protoplast washing medium according to Power and Chapman - CPW972 CPW basic medium supplemented with 9% mannitol and 7.2% sorbitol - DAPI 4,6-diamidino-2-phenylindole - NLN nutrient medium according to Lichter modified by Pechan and Keller - NLN13 NLN medium supplemented with 13% sucrose - NLNP NLN13 supplemented with 7.2% sorbitol  相似文献   

9.
10.
Fusion of the generative and vegetative nuclei physically separated by a wall has been observed in cultured microspores of barley. The generative cell appears to play an active role in fusion as it elongates toward the vegetative nucleus, becomes detached from the microspore wall, and finally completely encloses the vegetative nucleus. The generative cell wall disappears before nuclear fusion takes place. Since these events have been known to occur during pollen development in vivo, it is hypothesized that the occurrence of nuclear fusion in cultured microspores is the result of continued expression of the genes for gametophytic development.  相似文献   

11.
The formation of anomalous, binucleate pollen grains and their subsequent embryogenic development, induced by anther culture in Hyoscyamus niger, were analyzed by transmission electron microscopy (TEM). In culture, uninucleate pollen grains occasionally divided symmetrically giving rise to two apparently identical nuclei sharing a common cytoplasm. These nuclei divided once or twice unaccompanied by cell wall formation. After the daughter nuclei organized into cells, their subsequent division products contributed to embryoid formation. In conjunction with previous studies of pollen embryogenesis in H. niger, it appears that in contrast to the principle mode of embryogenesis (i.e., first asymmetric division forms typical two-celled pollen grain and the generative cell acts as the embryogenic precursor), anomalous pollen show no carry-over of gametophytic influences following embryogenic induction. This suggests that specific pathways of embryogenesis are correlated with the rate at which gametophytic gene activity is repressed following induction.  相似文献   

12.
13.
The regulation of developmental pathways in cultured microspores of tobacco (Nicotiana tabacum L) and snapdragon (Antirrhinum majus L) by medium pH is described for the first time. Unicellular tobacco and snapdragon microspores developed into normal, fertile pollen when cultured in media T1 and AT3 at pH 7.0 and 25°C for 6 and 8 days, respectively. First, pollen mitosis was asymmetric and mature pollen grains were filled with starch granules and germinated upon transfer to a germination medium. However, when tobacco and snapdragon microspores were cultured in media T1 and AT3, respectively, at pH 8.0–8.5 for 4–6 days at 25 °C, the frequency of symmetric division increased significantly with the formation two nuclei of equal size, and the gametophytic pathway was blocked, as seen by the lack of starch accumulation and the inhibition of pollen germination. The transfer of these microspores to embryogenesis medium AT3 at pH 6.5 resulted in the formation of multicellular structures in both species and, in tobacco, in the formation of embryos and plants. In order to understand the possible mechanisms of the action of high pH, sucrose metabolism was analysed in isolated microspores of tobacco cultured at various pH values. Invertase (EC 3.2.1.26) activity in microspores was maximal at pH 5.0 and strongly decreased at higher pH, leading to a slow-down of sucrose cleavage. At the same time the incorporation of 14C-labelled sucrose from the medium into microspores was drastically reduced at high pH. These data suggest that isolated microspores are not able to metabolise carbohydrates at high pH and thus undergo starvation stress, which was shown earlier to block the gametophytic pathway and trigger sporophytic development.  相似文献   

14.
This study aimed to analyze male gamete behavior from mature pollen to pollen tube growth in the bicellular pollen species Alstroemeria aurea. For mature pollen, pollen protoplasts were examined using flow cytometry. The protoplasts showed two peaks of DNA content at 1C and 1.90C. Flow cytometry at different developmental stages of pollen tubes cultured in vitro revealed changes in the nuclear phase at 9 and 18 h after culture. Sperm cell formation occurred at 6–9 h after culture, indicating that the first change was due to the division of the generative cells into sperm cells. After sperm cell formation, the number of vegetative nucleus associations with sperm cells showed a tendency to increase. This association was suggested as the male germ unit (MGU). When sperm cells, vegetative nuclei, and partial MGUs were collected separately from pollen tubes cultured for 18 h and analyzed using a flow cytometer, the sperm cells and vegetative nuclei contained 1C DNA, while the DNA content of partial MGUs was counted as 2C. Therefore, the second change in the nuclear phase, which results in an increase in 2C nuclei, is possibly related to the formation of MGUs.  相似文献   

15.
Rashid  A.  Reinert  J. 《Protoplasma》1981,109(3-4):285-294
Summary InNicotiana cold treatment causes differentiation of embryogenic pollen. This differentiation initiates on the plant and is completed in culture. Differentiation on the plant results in pollen dimorphism and differentiation in culture leads to pollen embryogenesis. An increased number of pollen capable of embryogenesis is possible on plants induced to flower in short days and low temperature (8 hours light, 18 °C). These embryogenic pollen on selective isolation, from buds at a petal length of 3.4±0.1 cm, fail to form embryos but do so in the cultures which receive cold treatment at 10 °C for 10 days. To some extent the differentiation of embryogenic pollen can be completed on plants induced to flower at 15 °C and embryogenic pollen from such plants form embryos at a low frequency which can be substantially increased on giving the cultures a cold treatment. The frequency of embryogenesis is higher in cultures of 15 °C plants than those of 18 °C plants. Low temperature requirements at two stages—to the plant and to the culture—are essential and complimentary for embryogenesis inab initio pollen cultures.Cold treatment causes repression of gametophytic differentiation and this results in the differentiation of embryogenic potential. The embryogenic pollen, unlike gametophytic pollen, are not fully differentiated structures. They are unable to divide and form embryos in presence of metabolic inhibitors such as actinomycin-D and cycloheximide.  相似文献   

16.
Summary Pollen grains capable of embryogenesis were selectively isolated from (a) near-mature buds from plants induced to flower in short days and low temperature (8 hours light and 18 °C) and (b) young buds from these plants with an additional low temperature treatment (10 °C for 10 days) and fixed for electron microscopy. The pollen from the former formed embryos at a very low frequency in culture, and at the subcellular level showed different degrees of regression of cytoplasm and mitochondria. On the contrary, cold-treated pollen were characterized by a high frequency of embryogenesis, up to 25% of the cultured pollen. They did not show regression of cytoplasm or organelles but had an attenuated cytoplasm which was not rich in ribosomes. Another noteworthy feature of embryogenic grains was the condensed nature of mitochondria. These characteristics of embryogenic grains indicate that they are repressed for gametophytic differentiation. The embryogenic pollen did not differentiate from gametophytic pollen which were very distinctive, having a thick exine, and dense cytoplasm rich in ribosomes. The close similarity of embryogenic grains with young microspores in terms of thin exine and sparse cytoplasm is suggestive of an indeterminate state and that determination into gametophytic or sporophytic (embryogenic) type is probably the function of differential gene activity. Of interest, in this context, is the condensation of mitochondria in embryogenic grains. The relationship, if any, between mitochondrial condensation and embryogenesis remains to be resolved.  相似文献   

17.
RNA synthesis during pollen embryogenesis in cultured anther segments of Hyoscyamus niger (henbane) has been followed by autoradiography of 3H-uridine incorporation. Embryogenic divisions were initiated in binucleate pollen grains in which the generative nucleus or both generative and vegetative nuclei synthesized RNA. When the first haploid mitosis in culture resulted in pollen grains with two nearly identical nuclei, those in which both nuclei synthesized RNA became embryogenic. Binucleate pollen grains in which 3H-uridine incorporation was confined exclusively to the vegetative nucleus gradually became starch-filled and nonembryogenic. Based on the degree of involvement of the vegetative nucleus in embryoid formation, some differences were noted between the counts of autoradiographic silver grains over cells cut off by the generative and vegetative nuclei during progressive embryogenesis. The possible significance of RNA synthesis in the nuclei of binucleate pollen grains in determining the pathway of embryogenic divisions is discussed.  相似文献   

18.
Elevation of the culture temperature to 32°C for approximately 8 h can irreversibly change the developmental fate of isolatedBrassica napus microspores from pollen development to embryogenesis. This stress treatment was accompanied by de-novo synthesis of a number of heat-shock proteins (HSPs) of the 70-kDa class: HSP68 and HSP70. A detailed biochemical and cytological analysis was performed of the HSP68 and HSP70 isoforms. Eight HSP68 isoforms, one of which was induced three fold by the stress treatment, were detected on two-dimensional immunoblots. Immunocytochemistry revealed a co-distribution of HSP68 with DNA-containing organelles, presumably mitochondria. Six HSP70 isoforms were detected, one of which was induced six fold under embryogenic culture conditions. During normal pollen development, HSP70 was localized in the nucleoplasm during the S phase of the cell cycle, and predominantly in the cytoplasm during the remainder. Induction of embryogenic development in late unicellular microspores was accompanied by an intense anti-HSP70 labeling of the nucleoplasm during an elongated S phase. In early bicellular pollen the nucleus of the vegetative cell, which normally does not divide and never expresses HSP70, showed intense labeling of the nucleoplasm with anti-HSP70 after 8 h of culture under embryogenic conditions. These results demonstrate a strong correlation between the phase of the cell cycle, the nuclear localization of HSP70 and the induction of embryogenesis. As temperature stress alone is responsible for the induction of embryogenic development, and causes an altered pattern of cell division, there might be a direct involvement of HSP70 in this process.Abbreviations HSP heat-shock protein - 2-D two-dimensional - DAPI 4,6-diamidino-2-phenylindole. 1-D = one-dimensional - pI isoelectric point  相似文献   

19.
Genesis of microspore-derived triploid petunias   总被引:2,自引:0,他引:2  
Summary A total of 61 microspore-derived plants of Petunia parodii were grown to maturity revealing a predominent population of triploids, 80.3%. Cytological investigations, together with the evidence from microfluorimetry, suggest that the origin of these triploids was due to the fusion of interphase nuclei in two different pathways. In the majority of embryogenic microspores, a vegetative nucleus of 1C DNA content fused with an endo-reduplicated 2C DNA generative nucleus at the binucleate stage and produced true triploid embryoids and plantlets (A pathway). Where this fusion failed, both the vegetative and the generative nuclei divided separately and in the multinucleate microspore two or more daughter nuclei fused to form a mixoploid embryoid. Such mixoploid embryoids produced a mixed population of plants with various ploidy levels as well as ploidy polymorphism within an individual. Since the triploids are morphologically superior with a faster growth rate than their diploids and related tetraploids, a predominent population of triploid plants was obtained from such mixoploid embryoids (B pathway). By low temperature treatment of the anther-donor buds, the embryogenic response of microspores was enhanced up to 5-fold.  相似文献   

20.
The Feulgen-DNA contents of microspores, vegetative and generative nuclei of tobacco pollen grains in vivo and in anther culture have been determined by microphotometry. 1. The values of DNA content of vegetative and generative nuclei of the pollen grains selected at definite developmental stages vary between 1C and 2C levels, which coincide with the role of the dynamics of DNA in haploid cell cycle. This method applied in the study of androgenesis in anther culture is proved successful and valid. 2. By the cytomorphological investigation on androgenesis, the pollen embryoid in this experiment results from repeated divisions of the vegetative cell within the pollen grains. 3. In mature pollen grains of the same variety of tobacco in vivo, DNA replication has not occured in vegetative nuclei, in which the level of DNA remains in 1C. 4. In the cultured anthers after 8 days innoculation, 30% of the total pollen grains measured indicate that the vegetative nuclei have completed DNA replication and show 2C level. The pollen grains which have the potential to differentiate into the embryogenie pollen grains, may be distinguished from non-embryogenie ones by this method before any cytomorphological sign appears. The significance of this method in the study of the mechanism of androgenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号