首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Higher order chromatin degradation (HOCD), i.e. the scission of nuclear chromatin loops at the matrix attachment regions (MARs), is a hallmark of programmed cell death. We have previously demonstrated that hydrogen peroxide (H(2)O(2)) induces rapid HOCD in cultured oligodendrocytes generating two subpopulations of DNA fragments of >or=400 and 50-200 kb. In the present study, we examined the involvement of calcium in this process. HOCD was induced in primary rat oligodendrocytes by exposure to 1 mM H(2)O(2) and assessed by field inversion gel electrophoresis with and without S1 endonuclease digestion, to detect single and double stranded fragmentation, respectively. Chelating intracellular calcium with BAPTA/AM prior to H(2)O(2) exposure inhibited HOCD in a dose-dependent manner. Complete inhibition of HOCD was attained with 50 muM BAPTA/AM. The pretreatment of cells with desferroxamine mesylate, which may lower intracellular calcium levels, also resulted in a profound inhibition of HOCD, but the initial chromatin digestion into >or=400 kb single stranded DNA fragments was unaffected. Neither removing extracellular calcium nor blocking calcium release from intracellular stores with TMB-8 affected HOCD. Moreover, increasing intracellular calcium with A23187 calcium ionophore did not induce HOCD. Subsequent study in nuclei purified from C6 glioma cells revealed that the endonuclease responsible for HOCD is calcium-independent, but is magnesium-dependent. Magnesium-induced HOCD was not affected by the removal of calcium from nuclei with EGTA, but was practically abrogated in nuclei prepared from BAPTA/AM-pretreated cells. These results indicate that although H(2)O(2)-induced HOCD is not directly mediated by an increase of intracellular calcium concentration, normal resting levels of intracellular calcium are required for the maintenance of MAR-associated endonuclease in an active form.  相似文献   

2.
Although a large body of evidence supports a causative link between oxidative stress and neurodegeneration, the mechanisms are still elusive. We have recently demonstrated that hydrogen peroxide (H(2)O(2)), the major mediator of oxidative stress triggers higher order chromatin degradation (HOCD), i.e. excision of chromatin loops at the matrix attachment regions (MARs). The present study was designed to determine the specificity of H(2)O(2) in respect to HOCD induction. Rat glioma C6 cells were exposed to H(2)O(2) and other oxidants, and the fragmentation of genomic DNA was assessed by field inversion gel electrophoresis (FIGE). S1 digestion before FIGE was used to detect single strand fragmentation. The exposure of C6 cells to H(2)O(2) induced a rapid and extensive HOCD. Thus, within 30 min, total chromatin was single strandedly digested into 50 kb fragments. Evident HOCD was elicited by H(2)O(2) at concentrations as low as 5 micro M. HOCD was mostly reversible during 4-8h following the removal of H(2)O(2) from the medium indicating an efficient relegation of the chromatin fragments. No HOCD was induced by H(2)O(2) in isolated nuclei indicating that HOCD-endonuclease is activated indirectly by cytoplasmic signal pathways triggered by H(2)O(2). The exposure of cells to a synthetic peroxide, i.e. tert-butyrylhydroperoxide (tBH) also induced HOCD, but to a lesser extent than H(2)O(2). Contrary to the peroxides, the exposure of cells to equitoxic concentration of hypochlorite and spermine NONOate, a nitric oxide generator, failed to induce rapid HOCD. These results indicate that rapid HOCD is not a result of oxidative stress per se, but is rather triggered by signaling cascades initiated specifically by H(2)O(2). Furthermore, the rapid and extensive HOCD was observed in several rat and human cell lines challenged with H(2)O(2), indicating that the process is not restricted to glial cells, but rather represents a general response of cells to H(2)O(2).  相似文献   

3.
Neuronal oxidative stress (OS) injury has been proven to be associated with many neurodegenerative diseases, and thus, antioxidation treatment is an effective method for treating these diseases. Saikosaponin-D (SSD) is a sapogenin extracted from Bupleurum falcatum and has been shown to have many pharmacological activities. The main purpose of this study was to investigate whether and how SSD protects PC12 cells from H2O2-induced apoptosis. The non-toxic level of SSD significantly mitigated the H2O2-induced decrease in cell viability, reduced the apoptosis rate, improved the nuclear morphology, and reduced caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage. Additionally, exogenous H2O2-induced apoptosis by damaging the intracellular antioxidation system. SSD significantly slowed the H2O2-induced release of malonic dialdehyde (MDA) and lactate dehydrogenase and increased the activity of superoxide dismutase (SOD) and the total antioxidant capacity, thereby reducing apoptosis. More importantly, SSD effectively blocked H2O2-induced phosphorylation of extracellular-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK), and specific inhibitors of ERK, JNK, and p38-reduced OS injury and apoptosis, suggesting that SSD reduces OS injury and apoptosis via MAPK signalling pathways. Finally, we confirmed that SSD significantly reduced H2O2-induced reactive oxygen species (ROS) accumulation, and the ROS inhibitor blocked the apoptosis caused by MAPK activation and cellular oxidative damage. In short, our study confirmed that SSD reduces H2O2-induced PC12 cell apoptosis by removing ROS and blocking MAPK-dependent oxidative damage.  相似文献   

4.
Konat GW 《Neurochemical research》2002,27(11):1447-1451
Higher order chromatin degradation (HOCD) is a hallmark of programmed cell death. HOCD is mediated by enzymatic digestion of the DNA backbone at matrix attachment regions, and ultimately results in the excision of chromatin loops and their oligomers from chromosomes. We have recently demonstrated that hydrogen peroxide (H2O2), the major mediator of oxidative stress, rapidly induces HOCD. This demonstration allowed us to characterize several kinetic features of HOCD. Moreover, H2O2-induced HOCD provides a mechanistic link between oxidative stress and the pathology of neurodegeneration. Thus, in acute neurodegenerative conditions, which feature severe oxidative stress, H2O2-induced HOCD efficiently dismantles the genome, and thus, irreversibly commits cells to death. In chronic neurodegenerative conditions, which feature sublethal but perennial oxidative stress, cells undergo only a partial fragmentation of the genome via H2O2-induced HOCD. If unrepaired of improperly repaired, such a partial fragmentation leads to the generation and accumulation of somatic mutations that are likely to play the key role in delayed degeneration and death of neural cells.  相似文献   

5.
One of the plausible ways to prevent the reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical augmentation of endogenous antioxidant defense capacity. In this study, we investigated the neuroprotective effect of fucoidan on H(2)O(2)-induced apoptosis in PC12 cells and the possible signaling pathways involved. The results showed that fucoidan inhibited the decrease of cell viability, scavenged ROS formation and reduced lactate dehydrogenase release in H(2)O(2)-induced PC12 cells. These changes were associated with an increase in superoxide dismutase and glutathione peroxidase activity, and reduction in malondialdehyde. In addition, fucoidan treatment inhibited apoptosis in H(2)O(2)-induced PC12 cells by increasing the Bcl-2/Bax ratio and decreasing active caspase-3 expression, as well as enhancing Akt phosphorylation (p-Akt). However, the protection of fucoidan on cell survival, p-Akt, the Bcl-2/Bax ratio and caspase-3 activity were abolished by pretreating with phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. In consequence, fucoidan might protect the neurocytes against H(2)O(2)-induced apoptosis via reducing ROS levels and activating PI3K/Akt signaling pathway.  相似文献   

6.
Changes in myocardium were studied during oxidative stress induced by infusion of hydrogen peroxide in the coronary vessels of isolated rat heart. Moderate concentrations of H2O2 increased the heart rate but decreased the contractile force, whereas higher concentrations of H2O2 decreased both parameters and increased the end diastolic pressure. The effect of H2O2 was stable, cumulative, and was associated with disturbance in respiration of mitochondria, increased production of ROS in them, and decrease in activities of antioxidant enzymes in the myocardium. Changes in the antioxidant status of the myocardium induced by long-term addition of coenzyme Q(10) into food was accompanied by decrease in the negative inotropic effect of H2O2, whereas the levels of superoxide dismutase and glutathione peroxidase after oxidative stress were virtually unchanged. The activities of these enzymes displayed a high positive correlation with the cardiac function. The findings suggest that coenzyme Q(10) should increase resistance of the myocardium to oxidative stress not only by a direct antioxidant mechanism but also indirectly, due to increased protection of antioxidant enzymes.  相似文献   

7.
8.
With increasing industrialization, numerous air pollutants are generated. This research aimed to investigate the effects of inhalation of oxidative pollutants. H2O2 was used to simulate oxidative air pollutants, and glutathione, a reducing agent that is widely distributed in organisms, was used as an antagonist, to protect cells from oxidative stress. H2O2 was diluted using two gradients (0.05 mM, 0.20 mM, 0.80 mM, 3.20 mM and 0.05 mM, 0.10 mM, 0.15 mM, 0.20 mM) and GSH was dissolved at 20 μM. MTT, MDA, ROS, GSH, and TSLP were used as biomarkers to evaluate oxidative stress and possible resulting molecular events. A dose–response relationship was observed between H2O2 concentrations and the above-mentioned biomarkers. Glutathione significantly reduced levels of oxidative stress.  相似文献   

9.
Mitochondrial dysfunction and oxidative stress occur in neurodegenerative diseases. Other results show that bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with Alzheimer's disease (AD) compared with controls and in fibroblasts from a young control treated with H(2)O(2). We hypothesize that alterations in oxidative stress underlie the exaggeration in BRCS in AD, and that appropriate antioxidants may be useful in treating this abnormality. Two indicators of different oxidant species were used to determine the effects of select oxidants on cellular oxidation status: carboxydichlorofluorescein (c-DCF) to detect reactive oxygen species (ROS), and 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF) to detect nitric oxide (NO(.-)). Various conditions that induce ROS, including H(2)O(2), oxygen/glucose deprivation, and 3-morpholinosyndnonimine (SIN-1), were used to test the ability of alpha-keto-ss-methyl-n-valeric acid (KMV) to scavenge ROS. KMV diminished c-DCF-detectable ROS that were induced by H(2)O(2), oxygen/glucose deprivation, or SIN-1 in PC12 cells, primary neuronal cultures, or fibroblasts. Furthermore, KMV reduced the H(2)O(2)-induced increase in BRCS and diminished the elevation in BRCS in cells from AD patients to control levels. On the other hand, DAF-detectable NO(.-) induced by SIN-1 was not scavenged by KMV and did not exaggerate BRCS. The results indicate that KMV is an effective antioxidant of c-DCF-detectable ROS. The effects of KMV are not cell type specific, but are ROS specific. The same H(2)O(2)-induced ROS that reacts with KMV may also underlie the changes in BRCS related to AD. Thus, KMV ameliorates the effects of ROS on calcium homeostasis related to oxidative stress and to AD.  相似文献   

10.
11.
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91phox (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca2+ channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca2+-dependent NADPH oxidase.  相似文献   

12.
It is believed that ROS-induced oxidative stress triggers numerous signaling pathways which are involved in neurodegenerative diseases, including Alzheimer’s disease. To find the effective drugs for neurodegenerative diseases, the deep delve into molecular mechanisms underlie these diseases is necessary. In the current study, we investigated the effects of flavonoid baicalein on H2O2-induced oxidative stress and cell death in SK-N-MC cells. Our results revealed that the treatment of SK-N-MC cells with H2O2 led to a decrease in cell viability through phosphorylation and activation of extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs) pathways followed by increase in Bax/Bcl2 ratio and initiation of caspase-dependent apoptotic pathways. In addition, our results showed that the exposure of SK-N-MC cells to H2O2 ended up in reduction of glutathione (GSH) levels of SK-N-MC cells via JNK/ERK-mediated down-regulation of γ-glutamyl-cysteine synthetase (γ-GCS) expression. Our results demonstrated that flavonoid baicalein protected against H2O2-induced cell death by inhibition of JNK/ERK pathways activation and other key molecules in apoptotic pathways, including blockage of Bax and caspase-9 activation, induction of Bcl-2 expression and prevention of cell death. Baicalein supported intracellular defense mechanisms through maintaining GSH levels in SK-N-MC cells by the removal of inhibition effects of JNK/ERK pathways from γ-GCS expression. In addition, baicalein attenuated lipid and protein peroxidation and intracellular reactive oxygen species in SK-N-MC cells. In accordance with these observations, baicalein can be a promising candidate in antioxidant therapy and designing of natural-based drug for ROS-induced neurodegenerative disorders.  相似文献   

13.
It was shown that tobacco leaf treatment with 100 mM H2O2 increased their content of endogenous H2O2 and activities of catalase and hydrolases (acid phosphatase, proteases, and RNase) and also caused various changes in the cell structure. In this case, programmed cell death (PCD) occurred in some cells, which was observed as chromatin condensation, cytoplasm collapse, etc. In the meantime, many cells displayed organelle activation rather than PCD. It is suggested that cells that undergo H2O2-dependent PCD release signaling molecules inducing protective mechanisms against oxidative stress in neighboring cells not exhibiting PCD.  相似文献   

14.
Several activators of bovine leukemia virus (BLV) expression, including lipopolysaccharides, phorbol esters and calcium ionophores, are known to generate reactive oxygen species (ROS). Therefore the influence of H2O2 on BLV expression in two BLV producing cell lines was investigated. The effect of H2O2 on BLV expression is apparently dose-dependent. Incubation of FLK/BLV cells with low concentrations of H2O2 (2.5 to 10 microM) induced a marked enhancement of BLV p24 synthesis and an activation of the long terminal repeat (LTR). Higher concentrations resulted in a decrease of proliferation, induction of apoptosis and in a decrease of BLV synthesis. Furthermore, in both cell lines H2O2 treatment led to the activation of NF-kappaB. Pretreatment of cells with antioxidants abrogated the H2O2-induced BLV expression. Taken together, our findings suggest that oxidative stress stimulates BLV expression via activation of NF-kappaB, raising the possibility that biological sources of H2O2, such as stimulated phagocytes, may influence BLV expression.  相似文献   

15.
Using open top chambers, the effects of elevated O3 (80 nmol mol−1) and elevated CO2 (700 μmol mol−1), alone and in combination, were studied on young trees of Quercus mongolica. The results showed that elevated O3 increased malondialdehyde content and decreased photosynthetic rate after 45 days of exposure, and prolonged exposure (105 days) induced significant increase in electrolyte leakage and reduction of chlorophyll content. All these changes were alleviated by elevated CO2, indicating that oxidative stress on cell membrane and photosynthesis was ameliorated. After 45 days of exposure, elevated O3 stimulated activities of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11), but the stimulation was dampened under elevated CO2 exposure. Furthermore, ascorbate (AsA) and total phenolics contents were not higher in the combined gas treatment than those in elevated O3 treatment. It indicates that the protective effect of elevated CO2 against O3 stress was achieved hardly by enhancing ROS scavenging ability after 45 days of exposure. After 105 days of exposure, elevated O3 significantly decreased activities of SOD, catalase (CAT, EC 1.11.1.6) and APX and AsA content. Elevated CO2 suppressed the O3-induced decrease, which could ameliorate the oxidative stress in some extent. In addition, elevated CO2 increased total phenolics content in the leaves both under ambient O3 and elevated O3 exposure, which might contribute to the protection against O3-induced oxidative stress as well.  相似文献   

16.
Luo P  Chen T  Zhao Y  Xu H  Huo K  Zhao M  Yang Y  Fei Z 《Free radical research》2012,46(6):766-776
Oxidative stress-induced cell damage is involved in many neurological diseases. Homer protein, as an important scaffold protein at postsynaptic density, regulates synaptic structure and function. Here, we reported that hydrogen peroxide (H(2)O(2)) induced the expression of Homer 1a. Down-regulation of Homer 1a with a specific small interfering RNA (siRNA) exacerbated H(2)O(2)-induced cell injury. Up-regulation of Homer 1a by lentivirus transfection did not affect the anti-oxidant activity, but significantly reduced the reactive oxygen species (ROS) production and lipid peroxidation after H(2)O(2)-induced oxidative stress. Overexpression of Homer 1a attenuated the loss of mitochondrial membrane potential (MMP) and ATP production induced by H(2)O(2), and subsequently inhibited mitochondrial dysfunction-induced cytochrome c release, increase of Bax/Bcl-2 ratio and caspase-9/caspase-3 activity. Furthermore, in the presence of BAPTA-AM, an intracellular free-calcium (Ca(2+)) chelator, overexpression of Homer 1a had no significant effects on H(2)O(2)-induced oxidative stress. These results suggest that Homer 1a has protective effects against H(2)O(2)-induced oxidative stress by reducing ROS accumulation and activation of mitochondrial apoptotic pathway, and these protective effects are dependent on the regulation of intracellular Ca(2+) homeostasis.  相似文献   

17.
Agmatine, at concentrations of 10 microM or 100 microM, is able to induce oxidative stress in rat liver mitochondria (RLM), as evidenced by increased oxygen uptake, H(2)O(2) generation, and oxidation of sulfhydryl groups and glutathione. One proposal for the production of H(2)O(2) and, most probably, other reactive oxygen species (ROS), is that they are the reaction products of agmatine oxidation by an unknown mitochondrial amine oxidase. Alternatively, by interacting with an iron-sulfur center of the respiratory chain, agmatine can produce an imino radical and subsequently the superoxide anion and other ROS. The observed oxidative stress causes a drop in ATP synthesis and amplification of the mitochondrial permeability transition (MPT) induced by Ca(2+). Instead, 1 mM agmatine generates larger amounts of H(2)O(2) than the lower concentrations, but does not affect RLM respiration or redox levels of thiols and glutathione. Indeed, it maintains the normal level of ATP synthesis and prevents Ca(2+)-induced MPT in the presence of phosphate. The self-scavenging effect against ROS production by agmatine at higher concentrations is also proposed.  相似文献   

18.
To determine the protective effects of Pellino-1 against H2O2-induced apoptosis in periodontal ligament stem cells (PDLSC). We demonstrated that H2O2 decreases PDLSC viability by 40 and 50% with the concentrations of 400 and 500 μM, respectively, with an observed downregulation of Pellino-1 mRNA and protein; we further concluded that overexpression of Pellino-1 significantly lowers 8-hydroxy-2′-deoxyguanosine levels by 10% and upregulates superoxide dismutase 1, glutathione peroxidase levels, and catalase mRNA levels by 200, 40, and 250%, respectively. More importantly, we found that overexpression of Pellino-1 inhibited H2O2-induced cellular apoptosis through the activation of the NF-κB signaling pathway. Pellino-1 may be critically important for cell survival in the presence of oxidative elements; activation of the NF-κB signaling cascade was required for the overexpression of Pellino-1 to protect the cells from H2O2-induced apoptosis.  相似文献   

19.
Neuregulins (NRGs), a large family of transmembrane polypeptide growth factors, mediate various cellular responses depending on the cell type and receptor expression. We previously showed that NRG mediates survival of PC12-ErbB4 cells from apoptosis induced by serum deprivation or tumor necrosis factor-alpha treatment. In the present study we show that NRG induces a significant protective effect from H(2)O(2)-induced death. This effect of NRG is mediated by the phosphatidylinositol 3-kinase (PI3K)-signaling pathway since NRG failed to rescue cells from H(2)O(2) insult in the presence of the PI3K inhibitor, LY294002. Furthermore, the downstream effector of PI3K, protein kinase B/AKT, is activated by NRG in the presence of H(2)O(2), and protein kinase B/AKT activation is inhibited by LY294002. In addition, our results demonstrate that reactive oxygen species (ROS) elevation induced by H(2)O(2) is inhibited by NRG. LY294002, which blocks NRG-mediated rescue, increases ROS levels. Moreover, both H(2)O(2)-induced ROS elevation and cell death are reduced by expression of activated PI3K. These results suggest that PI3K-dependent pathways may regulate toxic levels of ROS generated by oxidative stress.  相似文献   

20.
This study was designed to elucidate the mechanisms leading to down-regulation of the Akt/protein kinase B (PKB) survival pathway during H2O2-induced cell death. H2O2 produced early activation of Akt/PKB and also DNA damage that was followed by stabilization of p53 levels, formation of reactive oxygen species (ROS), and generation of ceramide through activation of a glutathione-sensitive neutral sphingomyelinase. These events correlated with long term dephosphorylation and subsequent degradation of Akt. A membrane-targeted active Akt version attenuated apoptosis but not necrosis induced by H2O2 and was more resistant to dephosphorylation and proteolysis induced by apoptotic concentrations of H2O2. Proteolysis of Akt was prevented by exogenous addition of glutathione, indicating a role of ROS and ceramide in Akt degradation. However, Akt was degraded similarly in cells transfected with wild type and dominant negative p53 mutant, indicating that degradation of Akt under oxidative injury may be p53-independent. Specific inhibitors of caspase groups I and III prevented proteolysis of Akt/PKB and poly(ADP-ribose) polymerase in cells submitted to apoptotic but not necrotic H2O2 concentrations. Surprisingly, in caspase-3-deficient MCF-7 cells Akt was more sensitive to H2O2-induced degradation than the caspase-3 substrate poly(ADP-ribose) polymerase. Moreover, the Akt/PKB double mutant Akt(D108A,D119A), which is not cleaved by caspase-3, and a triple mutant (D453A,D455A,D456A), which lacks the consensus sequence for caspase-3 cleavage, were also degraded in H2O2-treated cells. Our results suggest that strong oxidants generate intracellular ROS and ceramide which in term lead to down-regulation of Akt by dephosphorylation and caspase-3-independent proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号