共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
We describe a simple method for locating tryptophanyl-tRNA synthetase (E.C. 6.1.1.2) on cellulose acetate gels (Cellogel) following electrophoresis. Employing electrophoretic conditions which result in the separation of mouse and human tryptophanyl-tRNA synthetases, we have analyzed extracts of a number of independently derived mouse-human somatic cell hybrids and subclones derived from these hybrids for the presence of human tryptophanyl-tRNA synthetase. Electrophoretic patterns of hybrid extracts which contain human tryptophanyl-tRNA synthetase exhibit three bands. This is consistent with published evidence that the enzyme from mammalian cells is a homologous dimer. The electrophoretic patterns derived from some hybrids are unusual in that the human and hybrid bands of activity are more intense than the mouse band from the same hybrid. An analysis of hybrid cells and extracts indicates that human tryptophanyl-tRNA synthetase segregates with human chromosome 14 and with the only enzyme marker which has previously been assigned to this chromosome, nucleoside phosphorylase.R. M. D. was supported by a postdoctoral fellowship from the Damon Runyon Fund for Cancer Research. The work described was supported in part by grants from Cancer Research Campaign, the Medical Research Council, and NATO. 相似文献
5.
6.
Temperature-induced derepression of tryptophan biosynthesis in a tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis 总被引:1,自引:2,他引:1
下载免费PDF全文

W Steinberg 《Journal of bacteriology》1974,117(3):1023-1034
A tryptophanyl-transfer ribonucleic acid (tRNA) synthetase (l-tryptophan: tRNA ligase adenosine monophosphate, EC 6.1.1.2) mutant (trpS1) of Bacillus subtilis is derepressed for enzymes of the tryptophan biosynthetic pathway at temperatures which reduce the growth rate but still allow exponential growth. Derepression of anthranilate synthase in a tryptophan-supplemented medium (50 mug/ml) is maximal at 36 C, and the differential rate of synthesis is 600- to 2,000-fold greater than that of the wild-type strain or trpS1 revertants. A study of the derepression pattern in the mutant and its revertants indicates that the 5-fluorotryptophan recognition site of the tryptophanyl-tRNA synthetase is an integral part of the repression mechanism. Evidence for a second locus, unlinked to the trpS1 locus, which functions in the repression of tryptophan biosynthetic enzymes is presented. 相似文献
7.
8.
9.
Summary Two mutants with a defective cysteinyl-tRNA synthetase have been found in a collection of spontaneous temperature sensitive mutants. The mutated gene, which is designated cysS, is closely contransduced with purE. 相似文献
10.
11.
Role of methionyl-transfer ribonucleic acid in the regulation of methionyl-transfer ribonucleic acid synthetase of Escherichia coli K-12.
下载免费PDF全文

D Cassio 《Journal of bacteriology》1975,123(2):589-597
A decrease in the in vivo acylation level of methionine transfer ribonucleic acid (tRNAmet) induced by methioninyl adenylate led to a specific derepression of methionyl-transfer ribonucleic acid (tRNA) synthetase formation. This derepression required de novo protein synthesis and was reflected by overproduction of unaltered enzyme. Two different strains of Escherichia coli K-12 that have normal levels of methionyl-tRNA synthetase were examined and the derepression of methionyl-tRNA synthetase was observed in both. Moreover, for one of these strains, the relation between the level of methionyl-tRNA synthetase and deacylation level of tRNAmet was established; under the growth conditions used, when more than 25% of tRNAmet was deacylated, methionyl-tRNA synthetase formation was derepressed and the level of derepression became proportional to the amount of tRNAmet deacylated. Concomitantly, the enzyme was subject to specific inactivation as a consequence of which the true de novo rate of derepression of the formation of this enzyme was higher than that determined by measurements of enzyme activity. These studies were extended to strains AB311 and ed2, which had a constitutive enhanced level of methionyl-tRNA synthetase. In these strains no derepression of enzyme formation was observed on reducing the acylation level of tRNAmet by use of methioninyl adenylate. 相似文献
12.
Biochemical and genetic characterization of a temperature-sensitive, tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis 总被引:3,自引:7,他引:3
下载免费PDF全文

A temperature-sensitive, 5-fluorotryptophan (5FT)-resistant mutant of Bacillus subtilis was isolated which forms an altered tryptophanyl transfer ribonucleic acid synthetase [l-tryptophan: sRNA ligase (AMP), EC 6.1.1.2]. The mutant grows well at 30 C but not at 42 C. At the latter temperature, protein and ribonucleic acid (RNA) synthesis are abolished while deoxyribonucleic acid (DNA) synthesis proceeds for a considerable time. Tryptophanyl-transfer RNA (tRNA) synthetase activity is not detectable in the extracts of the mutant grown at 30 C whether this activity is measured by the attachment of l-tryptophan to tRNA or the l-tryptophan-dependent exchange of (32)P-pyrophosphate with adenosine triphosphate. Mixing experiments with extracts from the wild type and the mutant have ruled out the presence of an inhibitor or the absence of an activator as possible causes. Attempts to retrieve enzyme activity in vitro by various means (different conditions for cell disruption, addition of l-tryptophan, and adenosine triphosphate to the extraction buffer containing glycerol) were unsuccessful. The mutation in the locus of the tryptophanyl tRNA synthetase (trpS) was mapped on the bacterial chromosome by transformation and transduction. It is located between argC and metA. All temperature-resistant transformants recover wild-type levels of tryptophanyl tRNA synthetase activity and sensitivity to 5FT. Spontaneous revertants to temperature resistance are 5FT sensitive, but their levels of tryptophanyl tRNA synthetase activity and the thermolability of this enzyme in cell-free extracts varies. These revertants do not support the growth of a presumed nonsense mutant of phase SPO-1. Transduction experiments with phage PBS-1 indicated that reversion must be the result of an event at the site of the original mutation or at a site extremely close to it. 相似文献
13.
14.
The extremely tight binding between biotin and avidin or streptavidin makes labeling proteins with biotin a useful tool for many applications. BirA is the Escherichia coli biotin ligase that site-specifically biotinylates a lysine side chain within a 15-amino acid acceptor peptide (also known as Avi-tag). As a complementary approach to in vivo biotinylation of Avi-tag-bearing proteins, we developed a protocol for producing recombinant BirA ligase for in vitro biotinylation. The target protein was expressed as both thioredoxin and MBP fusions, and was released from the corresponding fusion by TEV protease. The liberated ligase was separated from its carrier using HisTrap HP column. We obtained 24.7 and 27.6 mg BirA ligase per liter of culture from thioredoxin and MBP fusion constructs, respectively. The recombinant enzyme was shown to be highly active in catalyzing in vitro biotinylation. The described protocol provides an effective means for making BirA ligase that can be used for biotinylation of different Avi-tag-bearing substrates. 相似文献
15.
Rapid micromethod for the purification of Escherichia coli ribonucleic acid polymerase and the preparation of bacterial extracts active in ribonucleic acid synthesis. 总被引:6,自引:14,他引:6
下载免费PDF全文

A rapid micromethod is described for the preparation of nucleic acid-free extracts from Escherichia coli that involves precipitation with polyethylene glycol. Extracts can be prepared from growing cells in 75 min by three short, low-speed centrifugations. The extract did not inhibit added purified ribonucleic acid (RNA) polymerase, suggesting that major inhibitors of RNA synthesis had been removed. This extract should be ideal for assessing the properties of mutant RNA polymerases. The rapid chromatography of the extracts with step elution from deoxyribonucleic acid- and diethylaminoethyl-cellulose columns resulted in high yields of substantially pure RNA polymerase. We used this technique to purify 35S-labeled RNA polymerase. This system should find application for the purification of small quantities of other bacterial RNA polymerases that share the general chromatographic properties of E. coli RNA polymerase. 相似文献
16.
The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
下载免费PDF全文

The mechanism of the recognition of methionine by Escherichia coli methionyl-tRNA synthetase was examined by a kinetic study of the recognition of methionine analogues in the ATP-PPi exchange reaction and the tRNA-aminoacylation reaction. The results show that the recognition mechanism consists of three parts: (1) the recognition of the size, shape and chemical nature of the amino acid side chain at the methionine-binding stage of the reaction; (2) the recognition of the length of the side chain at the stage of aminoacyl-adenylate complex-formation; (3) the recognition of the sulphur atom in the side chain at the stage of methionyl-tRNA formation. It is proposed that the sulphur atom interacts with the enzyme to induce a conformational change. A model of the active site incorporating the mechanism of methionine recognition is presented. 相似文献
17.
Regulation of the biosynthesis of aminoacyl-transfer ribonucleic acid synthetases and of transfer ribonucleic acid in Escherichia coli. V. Mutants with increased levels of valyl-transfer ribonucleic acid synthetase.
下载免费PDF全文

Spontaneous revertants of a temperature-sensitive Escherichia coli strain harboring a thermolabile valyl-transfer ribonucleic acid (tRNA) synthetase were selected for growth at 40 degrees C. Of these, a large number still contain the thermolabile valyl-tRNA synthetase. Three of these revertants contained an increased level of the thermolabile enzyme. The genetic locus, valX, responsible for the enzyme overproduction, is adjacent to the structural gene, valS, of valyl-tRNA synthetase. Determination (by radioimmunoassay) of the turnover rates of valyl-tRNA synthetase showed that the increased level of valyl-tRNA synthetase is due to new enzyme synthesis rather than decreased rates of protein degradation. 相似文献
18.
Organization of transfer ribonucleic acid genes in the Escherichia coli chromosome. 总被引:5,自引:4,他引:5
下载免费PDF全文

The arrangement of transfer ribonucleic acid (RNA) genes in the chromosome of Escherichia coli K-12 (C600) was examined with the techniques of restriction endonuclease digestion and Southern blotting. The number and size of restriction fragments containing transfer or ribosomal RNA sequences or both were estimated by a variety of restriction endonucleases, including EcoRI, BglI, SmaI, SalI, BamHI, and PstI. EcoRI liberated a minimum of 27 fragments which hybridized to transfer RNA and 16 which hybridized to ribosomal RNA. Enzymes which did not cut within the ribosomal RNA operons (PstI and BamHI) liberated 16 and 13 fragments, respectively, which hybridized to transfer RNA. Five PstI and six BamHi fragments also hybridized to ribosomal RNA, suggesting that there may be at least 11 chromosomal locations distinct from ribosomal RNA operons which encode transfer RNA genes. In addition, our data indicated that several transfer RNA genes may be very close to the 5' proximal ends of certain ribosomal RNA operons and close to the 3' distal ends of all seven ribosomal RNA operons. Similar studies have been carried out with 22 purified species of transfer RNA, and we report here the number and size of EcoRI restriction fragments which hybridize to these transfer RNA species. 相似文献
19.