首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the contribution of community members to functional diversity is a key question of conservation ecology, its measurement and interpretation are rather problematic. In this paper, we suggest a novel method for decomposing functional diversity. To do this we consider functional units (i.e. species or a group of species with identical traits) as the functional building blocks of communities. Then we propose the use of a recently developed measure of functional diversity (called modified functional attribute diversity or MFAD) and suggest additive decomposition of MFAD into functional values contributed by the functional units. We point out that functional values are related to changes in MFAD if the functional unit is removed from the community. This property of decomposition allows the quantification of the contribution of community members to functional diversity. By studying artificial and actual communities we compare the performance of our new method with other recently developed contribution measures, which are based on dendrograms and ordinations. Both theoretical considerations and analyses of artificial and actual data sets suggest that the proposed method of calculating functional values expresses more explicitly the contribution of community members to functional diversity and hereby can be used as a simple, yet efficient method for searching for functional keystones in ecological communities or for quantifying the contribution of community members to functional diversity.  相似文献   

2.
Aquatic hyphomycetes (AH) are ubiquitous fungi playing a key role in the decomposition of leaf litter in streams. Though their functional performance is modulated by their community composition, this ecological relationship remains poorly investigated due to a lack of suitable methods to identify the biomass-contribution of individual species to AH communities. We, therefore, designed and validated TaqMan® probe-based qPCR assays targeting ten AH species common in temperate regions, allowing detection and quantification of these species within complex communities. In a further step, we compared qPCR-obtained DNA levels to concentrations of the traditional fungal biomass proxy ergosterol. We demonstrate that the qPCR assays are valid for use and that DNA and ergosterol concentrations were significantly positively correlated, suggesting DNA levels as a suitable species-specific biomass proxy. Accordingly, the use of these assays may facilitate multi-species experiments to address major research issues in stress and community ecology including biodiversity-ecosystem functioning relationships.  相似文献   

3.
According to biochemical assays, the Bcl‐2 protein Diva from mouse regulates programmed cell death by heterodimerizing with other members of the family and by interacting with the apoptotic protease‐activating factor Apaf‐1. In typical Bcl‐2 heterodimers, peptide fragments comprising the Bcl‐2 homology domain 3 (BH3 domain) of proapoptotic members are capable of forming functional complexes with prosurvival proteins. High‐resolution structural studies have revealed that the BH3 peptide forms an α‐helix positioned in a canonical hydrophobic cleft of the antiapoptotic protein. Because Diva shows mutations in conserved residues within this area, it has been proposed to have a different interacting surface. However, we showed previously that Diva binds through the canonical groove the BH3 peptide of the human Bcl‐2 killing member Harakiri. To further test Diva's binding capabilities, here we show Nuclear Magnetic Resonance (NMR) data, indicating that Diva binds peptides derived from the BH3 domain of several other proapoptotic Bcl‐2 proteins, including mouse Harakiri, Bid, Bak and Bmf. We have measured the binding affinities of the heterodimers, which show significant variability. Structural models of the protein–peptide complexes based on NMR chemical shift perturbation data indicate that the binding surface is analogous. These models do not rely on NMR NOE (Nuclear Overhauser Effect) data, and thus our results can only suggest that the complexes share similar intermolecular interactions. However, the observed affinity differences correlate with the α‐helical population of the BH3‐peptides obtained from circular dichroism experiments, which highlights a role of conformational selection in the binding mechanism. Altogether, our results shed light on important factors governing Diva‐BH3 peptide molecular recognition mode. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
Phosphoglycerate mutase 5 (PGAM5) is an atypical mitochondrial Ser/Thr phosphatase that modulates mitochondrial dynamics and participates in both apoptotic and necrotic cell death. The mechanisms that regulate the phosphatase activity of PGAM5 are poorly understood. The C-terminal phosphoglycerate mutase domain of PGAM5 shares homology with the catalytic domains found in other members of the phosphoglycerate mutase family, including a conserved histidine that is absolutely required for catalytic activity. However, this conserved domain is not sufficient for maximal phosphatase activity. We have identified a highly conserved amino acid motif, WDXNWD, located within the unique N-terminal region, which is required for assembly of PGAM5 into large multimeric complexes. Alanine substitutions within the WDXNWD motif abolish the formation of multimeric complexes and markedly reduce phosphatase activity of PGAM5. A peptide containing the WDXNWD motif dissociates the multimeric complex and reduces but does not fully abolish phosphatase activity. Addition of the WDXNWD-containing peptide in trans to a mutant PGAM5 protein lacking the WDXNWD motif markedly increases phosphatase activity of the mutant protein. Our results are consistent with an intermolecular allosteric regulation mechanism for the phosphatase activity of PGAM5, in which the assembly of PGAM5 into multimeric complexes, mediated by the WDXNWD motif, results in maximal activation of phosphatase activity. Our results suggest the possibility of identifying small molecules that function as allosteric regulators of the phosphatase activity of PGAM5.  相似文献   

7.
8.
9.
MOTIVATION: Data on protein-protein interactions (PPIs) are increasing exponentially. To date, large-scale protein interaction networks are available for human and most model species. The arising challenge is to organize these networks into models of cellular machinery. As in other biological domains, a comparative approach provides a powerful basis for addressing this challenge. RESULTS: We develop a probabilistic model for protein complexes that are conserved across two species. The model describes the evolution of conserved protein complexes from an ancestral species by protein interaction attachment and detachment and gene duplication events. We apply our model to search for conserved protein complexes within the PPI networks of yeast and fly, which are the largest networks in public databases. We detect 150 conserved complexes that match well-known complexes in yeast and are coherent in their functional annotations both in yeast and in fly. In comparison with two previous approaches, our model yields higher specificity and sensitivity levels in protein complex detection. AVAILABILITY: The program is available upon request.  相似文献   

10.
11.
In this paper, we describe the use of iTRAQ (isobaric Tags for Relative and Absolute Quantitation) tags for comparison of protein expression levels between multiple samples. These tags label all peptides in a protein digest before labeled samples are pooled, fractionated and analyzed using mass spectrometry (MS). As the tags are isobaric, the intensity of each peak is the sum of the intensity of this peptide from all samples, providing a moderate enhancement in sensitivity. On peptide fragmentation, amino-acid sequence ions also show this summed intensity, providing a sensitivity enhancement. However, the distinct distribution of isotopes in the tags is such that, on further fragmentation, a tag-specific reporter ion is released. The relative intensities of these ions represent the relative amount of peptide in the analytes. Integration of the relative quantification data for the peptides allows relative quantification of the protein. This protocol discusses the rationale behind design, optimization and performance of experiments, comparing protein samples using iTRAQ chemistries combined with strong cation exchange chromatographic fractionation and MS.  相似文献   

12.
We developed single-point genome signature tags (SP-GSTs), a generally applicable, high-throughput sequencing-based method that targets specific genes to generate identifier tags from well-defined points in a genome. The technique yields identifier tags that can distinguish between closely related bacterial strains and allow for the identification of microbial community members. SP-GSTs are determined by three parameters: (i) the primer designed to recognize a conserved gene sequence, (ii) the anchoring enzyme recognition sequence, and (iii) the type IIS restriction enzyme which defines the tag length. We evaluated the SP-GST method in silico for bacterial identification using the genes rpoC, uvrB, and recA and the 16S rRNA gene. The best distinguishing tags were obtained with the restriction enzyme Csp6I upstream of the 16S rRNA gene, which discriminated all organisms in our data set to at least the genus level and most organisms to the species level. The method was successfully used to generate Csp6I-based tags upstream of the 16S rRNA gene and allowed us to discriminate between closely related strains of Bacillus cereus and Bacillus anthracis. This concept was further used successfully to identify the individual members of a defined microbial community.  相似文献   

13.
Paramyxovirus attachment and fusion (F) envelope glycoprotein complexes mediate membrane fusion required for viral entry. The measles virus (MeV) attachment (H) protein stalk domain is thought to directly engage F for fusion promotion. However, past attempts to generate truncated, fusion-triggering-competent H-stem constructs remained fruitless. In this study, we addressed the problem by testing the hypothesis that truncated MeV H stalks may require stabilizing oligomerization tags to maintain intracellular transport competence and F-triggering activity. We engineered H-stems of different lengths with added 4-helix bundle tetramerization domains and demonstrate restored cell surface expression, efficient interaction with F, and fusion promotion activity of these constructs. The stability of the 4-helix bundle tags and the relative orientations of the helical wheels of H-stems and oligomerization tags govern the kinetics of fusion promotion, revealing a balance between H stalk conformational stability and F-triggering activity. Recombinant MeV particles expressing a bioactive H-stem construct in the place of full-length H are viable, albeit severely growth impaired. Overall, we demonstrate that the MeV H stalk represents the effector domain for MeV F triggering. Fusion promotion appears linked to the conformational flexibility of the stalk, which must be tightly regulated in viral particles to ensure efficient virus entry. While the pathways toward assembly of functional fusion complexes may differ among diverse members of the paramyxovirus family, central elements of the triggering machinery emerge as highly conserved.  相似文献   

14.
15.
The Potential of Genomic Approaches to Rotifer Ecology   总被引:2,自引:1,他引:1  
Rotifers are a key component of many freshwater ecosystems, but surveys of the composition of rotifer communities are limited by the labor-intensiveness of sample processing, particularly of non-planktonic taxa, and by the shortage of investigators qualified to identify a broad range of rotifer species. Additional problems are posed by species that must be identified from living specimens, and by members of cryptic species complexes. As DNA sequencing becomes easier and cheaper, it has become practical to obtain representative DNA sequences from identified rotifer species for use in genome-based surveys to determine which rotifers are present in a new sample, avoiding the difficulties of traditional surveys. Here we discuss two genome-based tools used in surveys of microbial communities: serial analysis of gene tags (SAGT) and microarray hybridization. SAGT is a method for inexpensively obtaining characteristic short DNA sequences from a sample that can both identify taxa for which the tag sequence is known and signal the presence of additional uncharacterized species. Microarray hybridization allows detection of DNA sequences in the sample that are identical or similar to sequences present on the microarray. We also report the construction and hybridization of a small microarray of rotifer sequences, demonstrating that this method can discriminate among bdelloid families, and is likely to make much finer discriminations if appropriate sequences are present on the microarray. These techniques are most powerful when combined with traditional systematics in collaborative efforts, which may be fostered through the data base of rotifer biology, WheelBase (http://jbpc.mbl.edu/wheelbase).  相似文献   

16.
17.
Parker JS  Roe SM  Barford D 《The EMBO journal》2004,23(24):4727-4737
RNA silencing regulates gene expression through mRNA degradation, translation repression and chromatin remodelling. The fundamental engines of RNA silencing are RISC and RITS complexes, whose common components are 21-25 nt RNA and an Argonaute protein containing a PIWI domain of unknown function. The crystal structure of an archaeal Piwi protein (AfPiwi) is organised into two domains, one resembling the sugar-binding portion of the lac repressor and another with similarity to RNase H. Invariant residues and a coordinated metal ion lie in a pocket that surrounds the conserved C-terminus of the protein, defining a key functional region in the PIWI domain. Furthermore, two Asp residues, conserved in the majority of Argonaute sequences, align spatially with the catalytic Asp residues of RNase H-like catalytic sites, suggesting that in eukaryotic Argonaute proteins the RNase H-like domain may possess nuclease activity. The conserved region around the C-terminus of the PIWI domain, which is required for small interfering RNA (siRNA) binding to AfPiwi, may function as the receptor site for the obligatory 5' phosphate of siRNAs, thereby specifying the cleavage position of the target mRNA.  相似文献   

18.
To assess the functional role of the four conserved cysteinyl residues in the regulatory beta-subunit of protein kinase CK2, the effect of pCMB and other reagents of sulfhydryl groups has been investigated. The pCMB-treated beta-subunit has lost its ability to form either homodimers or regular alpha(2)beta(2) heterotetramers with the catalytic subunit. It also fails to increase catalytic activity toward peptide substrates and to mediate the stimulatory effect of polylysine. The pCMB-treated beta-subunit, however, is still able to prevent calmodulin phosphorylation and to physically interact with the alpha-subunit to form inactive complexes whose sedimentation coefficient is lower than that of CK2 holoenzyme. These inactive complexes upon treatment with reducing agents like DTT are converted into a fully active heterotetrameric holoenzyme.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号