首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mosquito-larvicidal binary toxin produced by Bacillus sphaericus consists of two polypeptides: BinA and BinB. Both proteins function together, and maximum toxicity is obtained when both are present in equimolar ratio. Cloning and expression of each component separately in heterologous hosts led to low toxicity of the crystal proteins. To improve the expression level, the purification process, and the activity of the binary toxin, the binA and binB genes were separately cloned in Eschericia coli. Each gene was fused in frame to the glutathione S-transferase (GST) gene to be expressed as GST-fusion protein (GST-BinA and GST-BinB). A high expression level was observed from both constructs, and the fusion proteins exhibited high toxicity to Culex quinquefasciatus larvae. High-purity toxin could be obtained by affinity chromatography. The result suggests that GST moiety facilitates high protein production and enables better solubility of the toxin inclusions inside the larval gut, leading to higher toxicity of the fusion protein.  相似文献   

2.
The mosquitocidal toxin 1 (mtx1) gene from genomic DNA of B. sphaericus strain 2297 was cloned and expressed in E. coli. DNA sequencing analysis of the cloned gene revealed a single open reading frame encoding an 870-amino acid polypeptide. Expression level of the full-length gene in E. coli was very low even though strong promoter was used or the gene was expressed as a fusion protein. Expression level was highly improved after the putative leader sequence was deleted, and the truncated gene was expressed as a fusion protein with glutathione S-transferase (GST-tMtx1). E. coli cells expressing GST-tMtx1 was highly toxic to Culex quinquefasciatus larvae and showed lower toxicity against Anopheles dirus and Aedes aegypti larvae. Enterobacter amnigenus An11, a mosquito larval gut colonizable bacteria, transformed with the cloned gene exhibited mosquito larvicidal activity. Result suggested that there is a potential to develop this protein to be used as an alternative mosquito control agent.  相似文献   

3.
Dihydrolipohyl dehydrogenase (DLD) is a FAD-dependent enzyme that catalyzes the reversible oxidation of dihydrolipoamide. Herein, we report medium optimization for the production of a recombinant DLD with NADH-dependent diaphorase activity from a strain of Bacillus sphaericus PAD-91. The DLD gene that consisted of 1413 bp was expressed in Escherichia coli BL21 (DE3), and its enzymatic properties were studied. The composition of production medium was optimized using one-variable-at-a-time method followed by response surface methodology (RSM). B. sphaericus DLD catalyzed the reduction of lipoamide by NAD+ and exhibited diaphorase activity. The molecular weight of enzyme was about 50 kDa and determined to be a monomeric protein. Recombinant diaphorase showed its optimal activity at temperature of 30 °C and pH 8.5. K m and V max values with NADH were estimated to be 0.025 mM and 275.8 U/mL, respectively. Recombinant enzyme was optimally produced in fermentation medium containing 10 g/L sucrose, 25 g/L yeast extract, 5 g/L NaCl and 0.25 g/L MgSO4. At these concentrations, the actual diaphorase activity was calculated to be 345.0 ± 4.1 U/mL. By scaling up fermentation from flask to bioreactor, enzyme activity was increased to 486.3 ± 5.5 U/mL. Briefly, a DLD with diaphorase activity from a newly isolated B. sphaericus PAD-91 was characterized and the production of recombinant enzyme was optimized using RSM technique.  相似文献   

4.
5.
Nattokinase producing bacterium, B. subtilis YF38, was isolated from douchi, using the fibrin plate method. The gene encoding this enzyme was cloned by polymerase chain reaction (PCR). Cytoplasmic expression of this enzyme in E. coli resulted in inactive inclusion bodies. But with the help of two different signal peptides, the native signal peptide of nattokinase and the signal peptide of PelB, active nattokinase was successfully expressed in E. coli with periplasmic secretion, and the nattokinase in culture medium displayed high fibrinolytic activity. The fibrinolytic activity of the expressed enzyme in the culture was determined to reach 260 urokinase units per micro-liter when the recombinant strain was induced by 0.7 mmol l−1 isopropyl-β-D- thiogalactopyranoside (IPTG) at 20°C for 20 h, resulting 49.3 mg active enzyme per liter culture. The characteristic of this recombinant nattokinase is comparable to the native nattokinase from B. subtilis YF38. Secretory expression of nattokinase in E. coli would facilitate the development of this enzyme into a therapeutic product for the control and prevention of thrombosis diseases.  相似文献   

6.
Sokawa et al. suggest that rel- strains of Escherichia coli possess abnormal protein synthesizing machinery, which cannot carry out normal protein synthesis when the supply of amino-acids is limited.  相似文献   

7.
Bacillus sphaericus produces a two-chain binary toxin composed of BinA (42 kDa) and BinB (51 kDa), which are deposited as parasporal crystals during sporulation. The toxin is highly active against Culex larvae and Aedes and Anopheles mosquitoes, which are the principal vectors for the transmission of malaria, yellow fever, encephalitis, and dengue. The use of B. sphaericus and Bacillus thuringiensis in mosquito control programs is limited by their sedimentation in still water. In this study, the binA and binB genes were cloned and the recombinant BinAB protein was expressed in three strains of Escherichia coli. These recombinant strains were used in a toxicity assay against Culex quinquefasciatus larvae. The highest expression level was achieved when both proteins were expressed in a single operon construct. The BinAB protein expressed in the E. coli Arctic strain showed higher larvicidal activity than either of the recombinant proteins from the E. coli Ril or pLysS strains. Furthermore, it had the highest oviposition attraction (49.1%, P?相似文献   

8.
The divIVB operon of Bacillus subtilis includes the cell shape-associated mre genes, including the membrane-associated proteins MreC and MreD. TnphoA mutagenesis was utilized to analyze a topological model for MreC. MreC has a short cytoplasmic amino terminus, a single membrane-spanning domain, and a large carboxy terminal domain which lies externally to the outer leaflet of the cell membrane. Expression of the B. subtilis MreB protein, or the Mre C and D proteins, results in a morphological conversion of the Escherichia coli host cells from a rod to a roughly spherical cell, morphologically similar to mre-negative mutants of E. coli. Immunolocalization of the MreC protein in B. subtilis revealed that this protein is found at the midcell division site of the bacterial cells, consistent with the postulated role of the Mre proteins in the regulation of septum-specific peptidoglycan synthesis. RID= ID= <E5>Correspondence to: </E5>G.C. Stewart; <E5>email:</E5> stewart&commat;vet.ksu.edu Received: 5 August 2002 / Accepted: 7 October 2002  相似文献   

9.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

10.
Plasmids pKS5 and pKSrec30 carrying normal and mutant alleles of the Deinococcus recA gene controlled by the lactose promoter slightly increase radioresistance of Escherichia coli cells with mutations in genes recA and ssb. The RecA protein of D. radiodurans is expressed in E. coli cells, and its synthesis can be supplementary induced. The radioprotective effect of the xenologic protein does not exceed 1.5 fold and yields essentially to the contribution of plasmid pUC19-recA1.1 harboring the E. coli recA + gene in the recovery of resistance of the ΔrecA deletion mutant. These data suggest that the expression of D. radiodurans recA gene in E. coli cells does not complement mutations at gene recA in the chromosome possibly due to structural and functional peculiarities of the D. radiodurans RecA protein.  相似文献   

11.
Indigoidine is a bacterial natural product with antioxidant and antimicrobial activities. Its bright blue color resembles the industrial dye indigo, thus representing a new natural blue dye that may find uses in industry. In our previous study, an indigoidine synthetase Sc-IndC and an associated helper protein Sc-IndB were identified from Streptomyces chromofuscus ATCC 49982 and successfully expressed in Escherichia coli BAP1 to produce the blue pigment at 3.93 g/l. To further improve the production of indigoidine, in this work, the direct biosynthetic precursor l-glutamine was fed into the fermentation broth of the engineered E. coli strain harboring Sc-IndC and Sc-IndB. The highest titer of indigoidine reached 8.81 ± 0.21 g/l at 1.46 g/l l-glutamine. Given the relatively high price of l-glutamine, a metabolic engineering technique was used to directly enhance the in situ supply of this precursor. A glutamine synthetase gene (glnA) was amplified from E. coli and co-expressed with Sc-indC and Sc-indB in E. coli BAP1, leading to the production of indigoidine at 5.75 ± 0.09 g/l. Because a nitrogen source is required for amino acid biosynthesis, we then tested the effect of different nitrogen-containing salts on the supply of l-glutamine and subsequent indigoidine production. Among the four tested salts including (NH4)2SO4, NH4Cl, (NH4)2HPO4 and KNO3, (NH4)2HPO4 showed the best effect on improving the titer of indigoidine. Different concentrations of (NH4)2HPO4 were added to the fermentation broths of E. coli BAP1/Sc-IndC+Sc-IndB+GlnA, and the titer reached the highest (7.08 ± 0.11 g/l) at 2.5 mM (NH4)2HPO4. This work provides two efficient methods for the production of this promising blue pigment in E. coli.  相似文献   

12.
A transgenic strain of the nitrogen-fixing filamentous cyanobacterium Anabaena PCC 7120 protected expressed δ-endotoxin proteins of Bacillus thuringiensis subsp. israelensis from damage inflicted by UV-B, a sunlight component that penetrates Earth's ozone layer. This organism, which serves as a food source to mosquito larvae and could multiply in their breeding sites, may solve the environment-imposed limitations of B. thuringiensis subsp. israelensis as a mosquito biological control agent. Received: 20 November 2001 / Accepted: 31 December 2001  相似文献   

13.
Treponema denticola is a small anaerobic spirochete often isolated from periodontal lesions and closely associated with periodontal diseases. This bacterium possesses a particular arginine peptidase activity (previously called BANA-peptidase or trypsin-like enzyme) that is common to the three cultivable bacterial species most highly associated with severe periodontal disease. We recently reported the identification of the opdB locus that encodes the BANA-peptidase activity of T. denticola through DNA sequencing and mutagenesis studies. In the present study, we report expression of T. denticola OpdB peptidase in Escherichia coli. The opdB PCR product was cloned into pET30b and then transformed into the E. coli BL21 (DE3)/pLysS expression strain. Assays of enzymatic activities in E. coli containing T. denticola opdB showed BANA-peptidase activity similar to that of T. denticola. Availability of this recombinant expression system producing active peptidase will facilitate characterization of the potential role of this peptidase in periodontal disease etiology.  相似文献   

14.
A recombinant butanol pathway composed of Clostridium acetobutylicum ATCC 824 genes, thiL, hbd, crt, bcd-etfB-etfA, and adhe1 (or adhe) coding for acetyl-CoA acetyltransferase (THL), β-hydroxybutyryl-CoA dehydrogenase (HBD), 3-hydroxybutyryl-CoA dehydratase (CRT), butyryl-CoA dehydrogenase (BCD), butyraldehyde dehydrogenase (BYDH), and butanol dehydrogenase (BDH), under the tac promoter control was constructed and was introduced into Escherichia coli. The functional expression of these six enzymes was proved by demonstrating the corresponding enzyme activities using spectrophotometric, high performance liquid chromatography and gas chromatography analyses. The BCD activity, which was not detected in E. coli previously, was shown in the present study by performing the procedure from cell extract preparation to activity measurement under anaerobic condition. Moreover, the etfA and etfB co-expression was found to be essential for the BCD activity. In the case of BYDH activity, the adhe gene product was shown to have higher specificity towards butyryl-CoA compared to the adhe1 product. Butanol production from glucose was achieved by the highly concentrated cells of the butanologenic E. coli strains, BUT1 with adhe1 and BUT2 with adhe, under anaerobic condition, and the BUT1 and BUT2 strains were shown to produce 4 and 16-mM butanol with 6- and 1-mM butyrate as a byproduct, respectively. This study reports the novel butanol production by an aerobically pregrown microorganism possessing the genes of a strict anaerobe, Clostridium acetobutylicum.  相似文献   

15.
Functional expression of lipase from Burkholderia sp. C20 (Lip) in various cellular compartments of Escherichia coli was explored. The poor expression in the cytoplasm of E. coli was improved by several strategies, including coexpression of the cytoplasmic chaperone GroEL/ES, using a mutant E. coli host strain with an oxidative cytoplasm, and protein fusion technology. Fusing Lip with the N-terminal peptide tags of T7PK, DsbA, and DsbC was effective in enhancing the solubility and biological activity. Non-fused Lip or Lip fusions heterologously expressed in the periplasm of E. coli formed insoluble aggregates with a minimum activity. Biologically active and intact Lip was obtained upon the secretion into the extracellular medium using the native signal peptide and the expression performance was further improved by coexpression of the periplasmic chaperon Skp. The extracellular expression was even more effective when Lip was secreted as a Lip–HlyA fusion via the α-hemolysin transporter. Finally, Lip could be functionally displayed on the E. coli cell surface when fused with the carrier EstA.  相似文献   

16.
The dnaF mutant of Escherichia coli has been shown to contain very low ribonucleoside diphosphate reductase activity. The B1 sub unit of the reductase is heat-sensitive in the mutant.  相似文献   

17.
Cytochrome bd from Escherichia coli is able to oxidize such substrates as guaiacol, ferrocene, benzohydroquinone, and potassium ferrocyanide through the peroxidase mechanism, while none of these donors is oxidized in the oxidase reaction (i.e. in the reaction that involves molecular oxygen as the electron acceptor). Peroxidation of guaiacol has been studied in detail. The dependence of the rate of the reaction on the concentration of the enzyme and substrates as well as the effect of various inhibitors of the oxidase reaction on the peroxidase activity have been tested. The dependence of the guaiacol-peroxidase activity on the H2O2 concentration is linear up to the concentration of 8 mM. At higher concentrations of H2O2, inactivation of the enzyme is observed. Guaiacol markedly protects the enzyme from inactivation induced by peroxide. The peroxidase activity of cytochrome bd increases with increasing guaiacol concentration, reaching saturation in the range from 0.5 to 2.5 mM, but then starts falling. Such inhibitors of the ubiquinol-oxidase activity of cytochrome bd as cyanide, pentachlorophenol, and 2-n-heptyl 4-hydroxyquinoline-N-oxide also suppress its guaiacol-peroxidase activity; in contrast, zinc ions have no influence on the enzyme-catalyzed peroxidation of guaiacol. These data suggest that guaiacol interacts with the enzyme in the center of ubiquinol binding and donates electrons into the di-heme center of oxygen reduction via heme b 558, and H2O2 is reduced by heme d. Although the peroxidase activity of cytochrome bd from E. coli is low compared to peroxidases, it might be of physiological significance for the bacterium itself and plays a pathophysiological role for humans and animals.  相似文献   

18.
We assess the microbial assay-dependent effect of AgNP on gram-negative Escherichia coli and gram-positive Bacillus subtilis. The experiment was conducted via three different assays: a growth inhibition assay, a colony forming unit assay, and a liquid-to-plate assay. AgNP were exposed either as liquid suspensions or in an agar state. Bacterial sensitivity to AgNP was found to be dependent on the microbial assay employed. E. coli was more sensitive than B. subtilis in the growth inhibition and CFU assays, but B. subtilis was more vulnerable than E. coli in the liquid-to-plate assay, ostensibly owing to the food stress mechanisms of B. subtilis in exposure medium. The dissolution of silver from AgNP could not explain the observed toxicity of AgNP. We detected clear evidence of AgNP uptake by cells. The results of this study showed that the microbial toxicity of AgNP and the effects of dissolved silver ions were influenced profoundly by the microbial test method employed.  相似文献   

19.
A nucleic acid sequence MC, encoding Momordica Chanrantia anti-hyperglycaemic peptide MC6 (accession: AAX06814) synthesized according to Escherichia coli preferred codons, was cloned and expressed in E. coli. Recombinant protein pQE8-MC (about 3.5 kDa) was purified and analyzed by 20% SDS–PAGE and western blot. It revealed that the expressed pQE8-MC had good solubility in aqueous media. An HPLC assay was used to confirm the expression of pQE8-MC. Subsequent pharmacological activity assay revealed a significant hypoglycemic effect of low dose treatments of pQE8-MC on male kunming mice. Four hours after an intravenous tail injection, the blood sugar levels of mice treated with pQE8-MC saline solution A3 (1 mg/kg BW) decreased greatly (P < 0.01) relative to the levels of a control group. This suggests that pQE8-MC, expressed in bioengineered E. coli, has a similar hypoglycemic function to the natural protein MC6 from M. Chanrantia. These results reveal the possibility of using bio-engineered bacteria as an anti-diabetic agent.  相似文献   

20.
Xylella fastidiosa was the first phytopathogen to be completely sequenced, and its genome revealed several interesting features to be used in functional studies. In the present work, the htpX gene, which encodes a protein involved in the heat shock response in other bacteria, was analyzed by RT-PCR by using cells derived from different cultural conditions. This gene was induced after a temperature upshift to 37°C after growth in minimal medium, XDM, but showed constitutive expression in rich medium or in XDM plus plant extracts. Sequences upstream to the htpX gene, containing a putative regulatory region, were also transferred to E. coli, and the thermoregulation was maintained in the new host, since it was constitutively transcribed at 37°C or 45°C in all culture media tested, but not at 28°C in minimal culture medium. The gene was also cloned into the expression vector pET32Xa/LIC, and the expression of the corresponding protein was confirmed by Western blotting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号