首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
将苏云金芽胞杆菌以色列亚种的杀蚊晶体蛋白基因cry11A亚克隆到大肠杆菌-蓝藻的穿梭质粒载体pRL25C,然后用三亲本杂交的方法将重组质粒转移到一种具有固氮能力且可被蚊幼虫吞食的鱼腥藻(Anabaena)PCC7120中。Southernblot及Westernblot分析表明cry11A基因在鱼腥藻PCC7120中得以克隆和表达,但生物测定未能检测到转基因鱼腥藻对库蚊(Culex)的毒性,可能是因为带有苏云金芽胞杆菌自身启动子的Cry11A基因在鱼腥藻PCC7120中表达量不够高的缘故。  相似文献   

2.
解毒酶基因的克隆及其在大肠杆菌和蓝藻中的表达(英文)   总被引:1,自引:0,他引:1  
近几年来 ,在明确了杀虫药剂抗性机理的基础上 ,从杀虫药剂抗性的昆虫中分离出高抗性基因 (即解毒酶基因 ) ,将该基因克隆到表达载体 pRL 4 39上 ,得到表达载体 pRL B1,将其转化大肠杆菌HB10 1,获得了可以表达解毒酶基因的转基因工程菌株。同时构建了穿梭表达载体 pDC B1,并转化大肠杆菌HB10 1后 ,在抗生素氨卞霉素 (30 μg/mL)和卡那霉素 (30 μg/mL)平板上挑选阳性克隆 ,将阳性克隆的细胞、蓝藻和结合质粒以三亲结合转移的方式转入蓝藻。斑点杂交、Southern分析结果表明已经获得了Synechococcussp .PCC 794 2转基因工程藻。  相似文献   

3.
Various combinations of the genes cryIVA (cry4A), cryIVD (cry11A), and p20 from Bacillus thuringiensis subsp. israelensis were introduced into the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 by means of Escherichia coli-Anabaena shuttle vector pRL488p and were expressed under control of two tandem strong promoters, a cyanobacterial promoter (PpsbA) and an E. coli T7 promoter (PA1). Two of the clones carrying cryIVA plus cryIVD, one with p20 and one without p20, displayed toxicity against third-instar larvae of Aedes aegypti at levels greater than any level previously reported for transgenic cyanobacteria.  相似文献   

4.
Mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen were isolated by mutagenesis with UV irradiation, followed by a period of incubation in yellow light and then by penicillin enrichment. A cosmid vector, pRL25C, containing replicons functional in Escherichia coli and in Anabaena species was constructed. DNA from wild-type Anabaena sp. strain PCC 7120 was partially digested with Sau3AI, and size-fractionated fragments about 40 kilobases (kb) in length were ligated into the phosphatase-treated unique BamHI site of pRL25C. A library of 1,054 cosmid clones was generated in E. coli DH1 bearing helper plasmid pDS4101. A derivative of conjugative plasmid RP-4 was transferred to this library by conjugation, and the library was replicated to lawns of mutant Anabaena strains with defects in the polysaccharide layer of the envelopes of the heterocysts. Mutant EF116 was complemented by five cosmids, three of which were subjected to detailed restriction mapping; a 2.8-kb fragment of DNA derived from one of the cosmids was found to complement EF116. Mutant EF113 was complemented by a single cosmid, which was also restriction mapped, and was shown to be complemented by a 4.8-kb fragment of DNA derived from this cosmid.  相似文献   

5.
人肝金属硫蛋白-I_A基因在鱼腥藻中的克隆与表达   总被引:2,自引:0,他引:2  
将人工合成的人肝金属硫蛋白(metalothionein,简称MT)-IA基因插入至中间载体pRL-439上强启动子psbA后,再将其与穿梭载体pKT-210相连,得到大肠杆菌-蓝藻穿梭表达载体pKT-MT,用三亲接合转移法将pKT-MT转入丝状体蓝藻-鱼腥藻7120,经链霉素筛选,得到了稳定的转人肝MT-IA基因鱼腥藻.纯化单藻落,液体扩大培养.从鱼腥藻中提取的质粒经Southern印迹分析,确定人肝MT-IA基因已转入鱼腥藻7120中,Western印迹分析表明,金属硫蛋白在转人肝MT-IA基因鱼腥藻中得到了表达.经原子吸收光谱法测定表达量约为700μgMT/g鲜藻,重金属耐受性实验表明,得到了能耐受重金属-镉的转人肝MT-IA基因鱼腥藻,它将在清除水域中重金属污染和医药研究方面发挥重要作用.  相似文献   

6.
The ntcA gene from Synechococcus sp. strain PCC 7942 encodes a regulatory protein which is required for the expression of all of the genes known to be subject to repression by ammonium in that cyanobacterium. Homologs to ntcA have now been cloned by hybridization from the cyanobacteria Synechocystis sp. strain PCC 6803 and Anabaena sp. strain PCC 7120. Sequence analysis has shown that these ntcA genes would encode polypeptides strongly similar (77 to 79% identity) to the Synechococcus NtcA protein. Sequences hybridizing to ntcA have been detected in the genomes of nine other cyanobacteria that were tested, including strains of the genera Anabaena, Calothrix, Fischerella, Nostoc, Pseudoanabaena, Synechococcus, and Synechocystis.  相似文献   

7.
8.
The activities of uptake of thirteen 14C-labeled amino acids were determined in nine cyanobacteria, including the unicellular strains Synechococcus sp. strain PCC 7942 and Synechocystis sp. strain PCC 6803; the filamentous strain Pseudanabaena sp. strain PCC 6903, and the filamentous, heterocyst-forming strains Anabaena sp. strains PCC 7120 and PCC 7937; Nostoc sp. strains PCC 7413 and PCC 7107; Calothrix sp. strain PCC 7601 (which is a mutant unable to develop heterocysts); and Fischerella muscicola UTEX 1829. Amino acid transport mutants, selected as mutants resistant to some amino acid analogs, were isolated from the Anabaena, Nostoc, Calothrix, and Pseudanabaena strains. All of the tested cyanobacteria bear at least a neutral amino acid transport system, and some strains also bear transport systems specific for basic or acidic amino acids. Two genes, natA and natB, encoding elements (conserved component, NatA, and periplasmic binding protein, NatB) of an ABC-type permease for neutral amino acids were identified by insertional mutagenesis of strain PCC 6803 open reading frames from the recently published genomic DNA sequence of this cyanobacterium. DNA sequences homologous to natA and natB from strain PCC 6803 were detected by hybridization in eight cyanobacterial strains tested. Mutants unable to transport neutral amino acids, including natA and natB insertional mutants, accumulated in the extracellular medium a set of amino acids that always included Ala, Val, Phe, Ile, and Leu. A general role for a cyanobacterial neutral amino acid permease in recapture of hydrophobic amino acids leaked from the cells is suggested.  相似文献   

9.
10.
Structural studies of biomolecules using nuclear magnetic resonance (NMR) rely on the availability of samples enriched in (13)C and (15)N isotopes. While (13)C/(15)N-labeled proteins are generally obtained by overexpression in transformed Escherichia coli cells cultured in the presence of an expensive mixture of labeled precursors, those of the photoautotrophic cyanobacterium Anabaena sp. PCC 7120 can be uniformly labeled by growing them in medium containing Na(15)NO(3) and NaH(13)CO(3) as the sole nitrogen and carbon sources. We report here a novel vector-host system suitable for the efficient preparation of uniformly (13)C/(15)N-labeled proteins in Anabaena sp. PCC 7120. The 24-kDa N-terminal domain of the E. coli gyrase B subunit, used as a test protein, was cloned into the pRL25C shuttle vector under the control of the tac promoter. The transformed Anabaena cells were grown in the presence of the labeled mineral salts and culture conditions were optimized to obtain over 90% of (13)C and (15)N enrichment in the constitutively expressed 24-kDa polypeptide. The yield of purified 24-kDa protein after dual isotope labeling under anaerobic conditions was similar to that obtained with E. coli cells bearing a comparable expression vector and cultured in parallel in a commercially available labeling medium. Furthermore, as probed by NMR spectroscopy and mass spectrometry, the 24-kDa N-terminal domain expressed in Anabaena was identical to the E. coli sample, demonstrating that it was of sufficient quality for 3D-structure determination. Because the Anabaena system was far more advantageous taking into consideration the expense for the labels that were necessary, these results indicate that Anabaena sp. PCC 7120 is an economic alternative for the (13)C/(15)N-labeling of soluble recombinant proteins destined for structural studies.  相似文献   

11.
解毒酶基因在蓝藻中的克隆与表达   总被引:13,自引:0,他引:13  
用抗性库蚊酯酶基因B1的cDNA片段插入质粒pRL-439中的强启动子之后,再与穿梭表达载体pDC-8相连构建成大肠杆菌蓝藻穿梭表达载体pDC-B1,然后通过三亲接合转移法将pDC-B1转入蓝藻Synechococcus sp. PCC7942中,经新霉素筛选获遗传稳定的转基因藻株;纯化单藻落在液体中扩大培养,提取蓝藻质粒,Southern杂交确证B1cDNA已转入受体细胞;用酯酶的特异性底物β-乙酸萘酯(β-NA)检测B1的表达,转基因藻对β-NA的降解明显高于野生藻,证明酯酶B1基因在转基因藻中得到表达。  相似文献   

12.
13.
The gene for ribonucleotide reductase from Anabaena sp. strain PCC 7120 was identified and expressed in Escherichia coli. This gene codes for a 1,172-amino-acid protein that contains a 407-amino-acid intein. The intein splices itself from the protein when it is expressed in E. coli, yielding an active ribonucleotide reductase of 765 residues. The mature enzyme was purified to homogeneity from E. coli extracts. Anabaena ribonucleotide reductase is a monomer with a molecular weight of approximately 88,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Superose 12 column chromatography. The enzyme reduces ribonucleotides at the triphosphate level and requires a divalent cation and a deoxyribonucleoside triphosphate effector. The enzyme is absolutely dependent on the addition of the cofactor, 5'-adenosylcobalamin. These properties are characteristic of the class II-type reductases. The cyanobacterial enzyme has limited sequence homology to other class II reductases; the greatest similarity (38%) is to the reductase from Lactobacillus leichmannii. In contrast, the Anabaena reductase shows over 90% sequence similarity to putative reductases found in genome sequences of other cyanobacteria, such as Nostoc punctiforme, Synechococcus sp. strain WH8102, and Prochlorococcus marinus MED4, suggesting that the cyanobacterial reductases form a closely related subset of the class II enzymes.  相似文献   

14.
A gene coding for a Fur (ferric uptake regulation) protein from the cyanobacterium Anabaena PCC 7119 has been cloned and overexpressed in Escherichia coli. DNA sequence analysis confirmed the presence of a 151-amino-acid open reading frame that showed homology with the Fur proteins reported for the unicellular cyanobacteria Synechococcus 7942 and Synechocystis PCC 6803. Two putative Fur-binding sites were detected in the promoter regions of the fur gene from Anabaena. Partially purified recombinant Fur binds to the flavodoxin promoter as well as its own promoter. This suggests that the Fur gene is autoregulated in Anabaena.  相似文献   

15.
Abstract We inserted the mosquito esterase B1 gene into the expression vector pRL‐439, which possesses the strong promoter PpsbA. The recombinant plasmid pRL‐Bl was used to transform E. coli HBlOl, and the positive clones were screened on LB medium plate containing 100 mg/mL ampicillin. The results of dot blotting and Southern hybridization demonstrated that these positive clones were transformed bacteria. Western blotting indicated that esterase B1 gene had been successfully expressed under the control of the PpsbA promoter in E. coli. A shuttle verruction‐B1 (pDGBl) was constructed by inserting B1‐cDNA from pRL‐Bl into polycloning site of plasmid pDc8. PDGBl was transferred into Synechoccus sp. PCC7942 through triparental conjugal transfer. Transformed single Synechococcus sp. PCC 7942 clone was obtained by neomycin screening, and large‐scale culture in liquid medium was carried out. Results of Southern blotting proved that pWB1 was transferred into Synechococcus sp. PCC 7942.  相似文献   

16.
人表皮生长因子(hEGF)基因在蓝藻中的表达   总被引:3,自引:0,他引:3  
人表皮生长因子(hEGF)是由53个氨基酸组成的蛋白,在临床上内服与外敷可促进内外表皮细胞的生长。将人工合成的hEGF基因连接到质粒pRL-489上,位于启动子psb下游。验证连接成功后,用三亲接合转移方法将载体pRL-hEGF导入聚球藻Synechococcus sp.PCC7002和鱼腥藻Anabeana sp.PCC7120。由于pRL-hEGF没有能在单细胞蓝藻中自主复制的复制子,通过筛选,hEGF在聚球藻7002中是整合到蓝藻染色体上进行表达的。用PCR扩增的方法在两种转基因藻中均检测到hEGF基因的存在。放射免疫分析证明,hEGF基因在两种转基因藻中均得到了表达。而且,在聚球藻7002中是采用分泌形式将表达产物分泌到培养液中。  相似文献   

17.
The changes in the expression of sigma factor genes during dehydration in terrestrial Nostoc HK-01 and aquatic Anabaena PCC 7120 were determined. The expression of the sigJ gene in terrestrial Nostoc HK-01, which is homologous to sigJ (alr0277) in aquatic Anabaena PCC 7120, was significantly induced in the mid-stage of dehydration. We constructed a higher-expressing transformant of the sigJ gene (HE0277) in Anabaena PCC 7120, and the transformant acquired desiccation tolerance. The results of Anabaena oligonucleotide microarray experiments showed that a comparatively large number of genes relating to polysaccharide biosynthesis were upregulated in the HE0277 cells. The extracellular polysaccharide released into the culture medium of the HE0277 cells was as much as 3.2-fold more than that released by the control cells. This strongly suggests that the group 3 sigma factor gene sigJ is fundamental and conducive to desiccation tolerance in these cyanobacteria.  相似文献   

18.
The cyanobacteria Anacystis nidulans (Synechococcus sp. PCC6301), Synechocystis sp. PCC6803, Anabaena sp. PCC 7120, and Nostoc sp. PCC8009 were grown photoautotrophically under reduced oxygen tension in a medium with sulfate replaced by thiosulfate and nitrate replaced by ammonium as the S- and N-sources, respectively. In addition, Anabaena and Nostoc were grown under dinitrogen-fixing conditions in a medium free of combined nitrogen. Membranes were isolated from late-logarithmic cells (culture density corresponding to approximately 3 microliters packed cells per milliliter); cytoplasmic and thylakoid membranes were separated and purified according to established procedures. Acid-labile hemes were extracted from the membranes and subjected to reversed-phase high-performance liquid chromatography. Separated hemes were analyzed spectroscopically and identified by comparison with authentic standards. In addition to hemes B, A, and O, the latter of which was induced under semianaerobic conditions only, substitution of thiosulfate and ammonium for the oxy-anions sulfate and nitrate led to the appearance of spectrally discernible heme D in the membranes and extracts therefrom. However, spectroscopic and kinetic investigation of the membrane-bound heme D rather disproved any reaction with oxygen or carbon monoxide. Kinetic measurements performed with the membrane-bound respiratory oxidase gave evidence for only two kinetically competent terminal oxidases, a3 and o3, both apparently associated with a single type of apoprotein, viz. subunit I of the known cyanobacterial aa3-type cytochrome c oxidase. The heme D, on the other hand, seems to form a spectrally distinguished, yet kinetically ill-defined hemoprotein complex which does not qualify as a fully functional d-type terminal oxidase on our (wild-type) cyanobacteria even after growth under semianaerobic pseudo-reducing conditions. Also growth (of Anabaena and Nostoc) under dinitrogen-fixing conditions did not change this situation. Thus, we are left with (wild-type) cyanobacteria forming an unbranched respiratory chain with only a single type of terminal oxidase protein, viz. the known aa3-type cytochrome c oxidase. This oxidase, however, may incorporate different prosthetic (heme) groups in the sense of "heme promiscuity." Biosynthesis of the different heme groups thereby seems to respond to the ambient redox environment. In particular, however, conditions for expression of the two quinol oxidases potentially and additionally coded for by the genome of, e. g., Synechocystis sp. PCC6803 (see http://www.kazusa.or.jp/cyano), have not yet been found.  相似文献   

19.
The glbN gene of Nostoc commune UTEX 584 is juxtaposed to nifU and nifH, and it encodes a 12-kDa monomeric hemoglobin that binds oxygen with high affinity. In N. commune UTEX 584, maximum accumulation of GlbN occurred in both the heterocysts and vegetative cells of nitrogen-fixing cultures when the rate of oxygen evolution was repressed to less than 25 micromol of O2 mg of chlorophyll a(-1) h(-1). Accumulation of GlbN coincided with maximum synthesis of NifH and ferredoxin NADP+ oxidoreductase (PetH or FNR). A total of 41 strains of cyanobacteria, including 40 nitrogen fixers and representing 16 genera within all five sections of the cyanobacteria were screened for the presence of glbN or GlbN. glbN was present in five Nostoc strains in a single copy. Genomic DNAs from 11 other Nostoc and Anabaena strains, including Anabaena sp. strain PCC 7120, provided no hybridization signals with a glbN probe. A constitutively expressed, 18-kDa protein which cross-reacted strongly with GlbN antibodies was detected in four Anabaena and Nostoc strains and in Trichodesmium thiebautii. The nifU-nifH intergenic region of Nostoc sp. strain MUN 8820 was sequenced (1,229 bp) and was approximately 95% identical to the equivalent region in N. commune UTEX 584. Each strand of the DNA from the nifU-nifH intergenic regions of both strains has the potential to fold into secondary structures in which more than 50% of the bases are internally paired. Mobility shift assays confirmed that NtcA (BifA) bound a site in the nifU-glbN intergenic region of N. commune UTEX 584 approximately 100 bases upstream from the translation initiation site of glbN. This site showed extensive sequence similarity with the promoter region of glnA from Synechococcus sp. strain PCC 7942. In vivo, GlbN had a specific and prominent subcellular location around the periphery of the cytosolic face of the cell membrane, and the protein was found solely in the soluble fraction of cell extracts. Our hypothesis is that GlbN scavenges oxygen for and is a component of a membrane-associated microaerobically induced terminal cytochrome oxidase.  相似文献   

20.
The pathway from beta-carotene to astaxanthin is a crucial step in the synthesis of astaxanthin, a red antioxidative ketocarotenoid that confers beneficial effects on human health. Two enzymes, a beta-carotene ketolase (carotenoid 4,4'-oxygenase) and a beta-carotene hydroxylase (carotenoid 3,3'-hydroxylase), are involved in this pathway. Cyanobacteria are known to utilize the carotenoid ketolase CrtW and/or CrtO, and the carotenoid hydroxylase CrtR. Here, we compared the catalytic functions of CrtW ketolases, which originated from Gloeobacter violaceus PCC 7421, Anabaena (also known as Nostoc) sp. PCC 7120 and Nostoc punctiforme PCC 73102, and CrtR from Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120 and Anabaena variabilis ATCC 29413 by complementation analysis using recombinant Escherichia coli cells that synthesized various carotenoid substrates. The results demonstrated that the CrtW proteins derived from Anabaena sp. PCC 7120 as well as N. punctiforme PCC 73102 (CrtW148) can convert not only beta-carotene but also zeaxanthin into their 4,4'-ketolated products, canthaxanthin and astaxanthin, respectively. In contrast, the Anabaena CrtR enzymes were very poor in accepting either beta-carotene or canthaxanthin as substrates. By comparison, the Synechocystis sp. PCC 6803 CrtR converted beta-carotene into zeaxanthin efficiently. We could assign the catalytic functions of the gene products involved in ketocarotenoid biosynthetic pathways in Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120 and N. punctiforme PCC 73102, based on the present and previous findings. This explains why these cyanobacteria cannot produce astaxanthin and why only Synechocystis sp. PCC 6803 can produce zeaxanthin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号