首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
To date real-time quantitative PCR and gene expression microarrays are the methods of choice for quantification of nucleic acids. Herein, we described a unique fluorescence resonance energy transfer-based microarray platform for real-time quantification of nucleic acid targets that combines advantages of both and reduces their limitations. A set of 3′ amino-modified TaqMan probes were designed and immobilized on a glass slide composing a regular microarray pattern, and used as probes in the consecutive PCR carried out on the surface. During the extension step of the PCR, 5′ nuclease activity of DNA polymerase will cleave quencher dyes of the immobilized probe in the presence of nucleic acids targets. The increase of fluorescence intensities generated by the change in physical distance between reporter fluorophore and quencher moiety of the probes were collected by a confocal scanner. Using this new approach we successfully monitored five different pathogenic genomic DNAs and analyzed the dynamic characteristics of fluorescence intensity changes on the TaqMan probe array. The results indicate that the TaqMan probe array on a planar glass slide monitors DNA targets with excellent specificity as well as high sensitivity. This set-up offers the great advantage of real-time quantitative detection of DNA targets in a parallel array format.  相似文献   

2.
Strand displacement amplification (9SDA) is an isothermal in vitro method of amplifying a DNA sequence prior to its detection. We have combined SDA with fluorescence polarization detection. A 5'-fluorescein-labelled oligodeoxynucleotide detector probe hybridizes to the amplification product that rises in concentration during SDA and the single- to double strand conversion is monitored through an increase in fluorescence polarization. Detection sensitivity can be enhanced by using a detector probe containing an EcoRI recognition sequence at its 5'-end that is not homologous to the target sequence. During SDA the probe is converted to a fully double-stranded form that specifically binds a genetically modified form of the endonuclease EcoRI which lacks cleavage activity but retains binding specificity. We have applied this SDA detection system to a target sequence specific for Mycobacterium tuberculosis.  相似文献   

3.
The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.  相似文献   

4.
L G Lee  C R Connell    W Bloch 《Nucleic acids research》1993,21(16):3761-3766
Nick-translation PCR was performed with fluorogenic probes. Two probes were used: one complementary to a sequence containing the F508 codon of the normal human cystic fibrosis (CF) gene (wt DNA) and one complementary to a sequence containing the delta F508 three base pair deletion (mut DNA). Each probe contained a unique and spectrally resolvable fluorescent indicator dye at the 5' end and a common quencher dye attached to the seventh nucleotide from the 5' end. The F508/delta F508 site was located between the indicator and quencher. The probes were added at the start of a PCR containing mut DNA, wt DNA or heterozygous DNA and were degraded during thermal cycling. Although both probes were degraded, each probe generated fluorescence from its indicator dye only when the sequence between the indicator and quencher dyes was perfectly complementary to target. The identify of the target DNA could be determined from the post-PCR fluorescence emission spectrum.  相似文献   

5.
链替代扩增反应作为一种体外恒温酶控扩增体系,主要基于限制酶打开缺口和无外切酶活性的DNA聚合酶的聚合替代的原理,随着该反应体系各环节的不断改进,目前该方法已应用于细菌尤其是分枝杆菌DNA的检测、体外进化模型的建立、核酸定量及芯片杂交等多个方面。  相似文献   

6.

Background

State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests.

Methodology and Principal Findings

The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique.

Conclusions and Significance

The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests.  相似文献   

7.
Duplex Scorpion primers in SNP analysis and FRET applications   总被引:12,自引:1,他引:11       下载免费PDF全文
Scorpions are fluorogenic PCR primers with a probe element attached at the 5′-end via a PCR stopper. They are used in real-time amplicon-specific detection of PCR products in homogeneous solution. Two different formats are possible, the ‘stem–loop’ format and the ‘duplex’ format. In both cases the probing mechanism is intramolecular. We have shown that duplex Scorpions are efficient probes in real-time PCR. They give a greater fluorescent signal than stem–loop Scorpions due to the vastly increased separation between fluorophore and quencher in the active form. We have demonstrated their use in allelic discrimination at the W1282X locus of the ABCC7 gene and shown that they can be used in assays where fluorescence resonance energy transfer is required.  相似文献   

8.
Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5′-end and a non-fluorescent quencher at the 3′-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2–4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB–quencher interaction and concealment of the MGB moiety inside the minor groove.  相似文献   

9.
Here we describe the properties of a novel class of oligonucleotide probes capable of sensitive hybridization-triggered fluorescence. These fluorogenic probes, known commercially as MGB Eclipse probes, are characterized by having a conjugated minor groove binder (MGB) ligand at the 5'-end and a fluorophore at the 3'-end. Additionally, they have an efficient quencher moiety at the 5'-end that is useful with a wide variety of fluorescent dyes. Fluorescence of the single-stranded MGB Eclipse probe is efficiently quenched by the interaction of the terminal dye and quencher groups when not hybridized. Upon hybridization to a complementary target, the MGB molecule folds into duplex and hyper-stabilizes it, allowing the use of shorter, more specific probe sequences. The 5'-MGB-quencher group also prevents nuclease digestion by Taq DNA polymerase during PCR. Because of the hybridization-triggered fluorescence and the excellent specificity imparted by the MGB, these 5'-MGB Eclipse probes have great versatility for real-time PCR applications. The high sensitivity and specificity are illustrated using single nucleotide polymorphism detection, viral load determination, and gene expression analysis.  相似文献   

10.
DNA was assayed in a homogeneous format using DNA probes containing hybridization-sensitive labels. The DNA probes were prepared from complementary DNA strands in which one strand was covalently labeled on the 5'-terminus with fluorescein and the complementary strand was covalently labeled on the 3'-terminus with a quencher of fluorescein emission, either pyrenebutyrate or sulforhodamine 101. Probes prepared in this manner were able to detect unlabeled target DNA by competitive hybridization producing fluorescence signals which increased with increasing target DNA concentration. A single pair of complementary probes detected target DNA at a concentration of approximately 0.1 nM in 10 min or about 10 pM in 20-30 min. Detection of a 4 pM concentration of target DNA was demonstrated in 6 h using multiple probe pairs. The major limiting factors were background fluorescence and hybridization rates. Continuous monitoring of fluorescence during competitive hybridization allowed correction for variable sample backgrounds at probe concentrations down to 20 pM; however, the time required for complete hybridization increased to greater than 1 h at probe concentrations below 0.1 nM. A promising application for this technology is the rapid detection of amplified polynucleotides. Detection of 96,000 target DNA molecules in a 50-microliters sample was demonstrated following in vitro amplification using the polymerase chain reaction technique.  相似文献   

11.
12.
A PCR-based assay for Listeria monocytogenes that uses the hydrolysis of an internal fluorogenic probe to monitor the amplification of the target has been formatted. The fluorogenic 5' nuclease PCR assay takes advantage of the endogenous 5' --> 3' nuclease activity of Taq DNA polymerase to digest a probe which is labelled with two fluorescent dyes and hybridizes to the amplicon during PCR. When the probe is intact, the two fluorophores interact such that the emission of the reporter dye is quenched. During amplification, the probe is hydrolyzed, relieving the quenching of the reporter and resulting in an increase in its fluorescence intensity. This change in reporter dye fluorescence is quantitative for the amount of PCR product and, under appropriate conditions, for the amount of template. We have applied the fluorogenic 5' nuclease PCR assay to detect L. monocytogenes, using an 858-bp amplicon of hemolysin (hlyA) as the target. Maximum sensitivity was achieved by evaluating various fluorogenic probes and then optimizing the assay components and cycling parameters. With crude cell lysates, the total assay could be completed in 3 h with a detection limit of approximately 50 CFU. Quantification was linear over a range of 5 x 10(1) to 5 x 10(5) CFU.  相似文献   

13.
A new class of modified oligonucleotides (combination probes) has been designed and synthesised for use in genetic analysis and RNA detection. Their chemical structure combines an intercalating anchor with a reporter fluorophore on the same thymine nucleobase. The intercalator (thiazole orange or benzothiazole orange) provides an anchor, which upon hybridisation of the probe to its target becomes fluorescent and simultaneously stabilizes the duplex. The anchor is able to communicate via FRET to a proximal reporter dye (e.g. ROX, HEX, ATTO647N, FAM) whose fluorescence signal can be monitored on a range of analytical devices. Direct excitation of the reporter dye provides an alternative signalling mechanism. In both signalling modes, fluorescence in the unhybridised probe is switched off by collisional quenching between adjacent intercalator and reporter dyes. Single nucleotide polymorphisms in DNA and RNA targets are identified by differences in the duplex melting temperature, and the use of short hybridization probes, made possible by the stabilisation provided by the intercalator, enhances mismatch discrimination. Unlike other fluorogenic probe systems, placing the fluorophore and quencher on the same nucleobase facilitates the design of short probes containing multiple modifications. The ability to detect both DNA and RNA sequences suggests applications in cellular imaging and diagnostics.  相似文献   

14.
Strand Displacement Amplification (SDA) is an isothermal, in vitro nucleic acid amplification technique based upon the ability of HincII to nick the unmodified strand of a hemiphosphorothioate form of its recognition site, and the ability of exonuclease deficient klenow (exo- klenow) to extend the 3'-end at the nick and displace the downstream DNA strand. Exponential amplification results from coupling sense and antisense reactions in which strands displaced from a sense reaction serve as target for an antisense reaction and vice versa. In the original design (G. T. Walker, M. C. Little, J. G. Nadeau and D. D. Shank (1992) Proc. Natl. Acad. Sci 89, 392-396), the target DNA sample is first cleaved with a restriction enzyme(s) in order to generate a double-stranded target fragment with defined 5'- and 3'-ends that can then undergo SDA. Although effective, target generation by restriction enzyme cleavage presents a number of practical limitations. We report a new target generation scheme that eliminates the requirement for restriction enzyme cleavage of the target sample prior to amplification. The method exploits the strand displacement activity of exo- klenow to generate target DNA copies with defined 5'- and 3'-ends. The new target generation process occurs at a single temperature (after initial heat denaturation of the double-stranded DNA). The target copies generated by this process are then amplified directly by SDA. The new protocol improves overall amplification efficiency. Amplification efficiency is also enhanced by improved reaction conditions that reduce nonspecific binding of SDA primers. Greater than 10(7)-fold amplification of a genomic sequence from Mycobacterium tuberculosis is achieved in 2 hours at 37 degrees C even in the presence of as much as 10 micrograms of human DNA per 50 microL reaction. The new target generation scheme can also be applied to techniques separate from SDA as a means of conveniently producing double-stranded fragments with 5'- and 3'-sequences modified as desired.  相似文献   

15.
We have developed a new method for identifying specific single- or double-stranded DNA sequences called nicking endonuclease signal amplification (NESA). A probe and target DNA anneal to create a restriction site that is recognized by a strand-specific endonuclease that cleaves the probe into two pieces leaving the target DNA intact. The target DNA can then act as a template for fresh probe and the process of hybridization, cleavage and dissociation repeats. Laser-induced fluorescence coupled with capillary electrophoresis was used to measure the probe cleavage products. The reaction is rapid; full cleavage of probe occurs within one minute under ideal conditions. The reaction is specific since it requires complete complementarity between the oligonucleotide and the template at the restriction site and sufficient complementarity overall to allow hybridization. We show that both Bacillus subtilis and B. anthracis genomic DNA can be detected and specifically differentiated from DNA of other Bacillus species. When combined with multiple displacement amplification, detection of a single copy target from less than 30 cfu is possible. This method should be applicable whenever there is a requirement to detect a specific DNA sequence. Other applications include SNP analysis and genotyping. The reaction is inherently simple to multiplex and is amenable to automation.  相似文献   

16.
A non-fluorescent quencher based on thiazole orange was incorporated into oligonucleotides. Fluorimetry and fluorogenic real-time polymerase chain reaction experiments demonstrated that the quencher is effective for fluorescein amidite dyes. The thiazole orange quencher also increased the melting temperature of DNA duplexes, which may facilitate the design of shorter and more discriminatory probes. The effectiveness of the quencher in TaqMan probes was also demonstrated.  相似文献   

17.
A method for real-time fluorescent detection and quantification of nucleic acid amplification using a restriction endonuclease was developed. In this homogeneous system detection is mediated by a primer containing a reporter and quencher moiety at its 5' terminus separated by a short section of DNA encoding a restriction enzyme recognition sequence. In the single stranded form, the signal from the fluorescent reporter is quenched due to fluorescence resonance energy transfer. However, as the primer becomes incorporated into a double stranded amplicon, a restriction enzyme present in the reaction cleaves the DNA linking the reporter and quencher, allowing unrestricted fluorescence of the reporter. To test this system, a primer specific for the E6 gene of human papilloma virus (HPV) 16 was combined with the cleavable energy transfer label and used to amplify HPV16 positive DNA. In the presence of the thermally stable restriction enzyme BstNI, the reporter system was found to generate a fluorescent signal in proportion to the amount of template DNA. In addition to this direct format, the reporter primer was also used to monitor and quantify the amplification of other sequences. This was accomplished by using primers that contain a tag sequence complementary to the reporter oligonucleotide.  相似文献   

18.
19.
We have studied the use of 'pseudocyclic oligonucleotides' (PCOs) (Jiang et al. Bioorg. Med. Chem. 1999, 7, 2727) as hybridization-based fluorescent probes. The resulting fluorescent tag-attached PCOs are called 'cyclicons'. Cyclicons consist of two oligonucleotides linked to each other through 3'-3' or 5'-5' ends. One of the oligos is the probe or primer-probe sequence that is complementary to a target nucleic acid (mRNA/DNA), and the other is a modifier oligo that is complementary to one of the ends of the probe oligo. A fluorescence molecule and a quencher molecule are attached at an appropriate position in the cyclicons. In the absence of the target nucleic acid, the fluorophore and the quencher are brought in close proximity to each other because of the formation of an intramolecular cyclic structure, resulting in fluorescence quenching. When the cyclicon hybridizes to the complementary target nucleic acid strand, the intramolecular cyclic structure of the cyclicon is destabilized and opened up, separating the fluorophore and quencher groups, resulting in spontaneous fluorescence emission. Fluorescent studies in the presence and absence of a target nucleic acid suggest that cyclicons exist in intramolecular cyclic structure form in the absence of the target and form the duplex with the target sequence when present. Both the cyclicons are useful for nucleic acid detection. The studies with DNA polymerase on 5'-5'-attached cyclicons suggest that the presence of quencher moiety in the probe sequence does not inhibit chain elongation by polymerase. The experiments with a 5'-5'-attached cyclicon suggest the new design serves as an efficient unimolecular primer-probe in real-time PCR experiments.  相似文献   

20.
Anchored multiplex amplification on a microelectronic chip array   总被引:6,自引:0,他引:6  
We have developed a method for anchored amplification on a microchip array that allows amplification and detection of multiple targets in an open format. Electronic anchoring of sets of amplification primers in distinct areas on the microchip permitted primer-primer interactions to be reduced and distinct zones of amplification created, thereby increasing the efficiency of the multiplex amplification reactions. We found strand displacement amplification (SDA) to be ideal for use in our microelectronic chip system because of the isothermal nature of the assay, which provides a rapid amplification system readily compatible with simple instrumentation. Anchored SDA supported multiplex DNA or RNA amplification without decreases in amplification efficiency. This microelectronic chip-based amplification system allows multiplexed amplification and detection to be performed on the same platform, streamlining development of any nucleic acid-based assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号