首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Experiments were carried out to investigate whether premetamorphic larvae of Boscas newt (Triturus boscai) are capable of using the geomagnetic field for Y-axis orientation (i.e., orientation toward and away from shore). Larvae were trained outdoor in two different training configurations, using one training tank aligned along the magnetic north–south axis, with shore facing north, and another training tank positioned with its length along the east–west axis, with shore located west. After training, premetamorphic newts were tested in an outdoor circular arena surrounded by a pair of orthogonally aligned cube-surface coils used to alter the alignment of the Earths magnetic field. Each newt was tested only once, in one of four magnetic field alignments: ambient magnetic field (i.e., magnetic north at North), and three altered fields (magnetic north rotated to East, West, South). Distributions of magnetic bearings from tested larvae indicated that they oriented bimodally along the magnetic direction of the trained Y-axis. These findings demonstrate that T. boscai larvae are sensitive to the geomagnetic field and can use it for orienting along a learned Y-axis. This study is the first to provide evidence of Y-axis orientation, accomplished by a magnetic compass, in larval urodeles.  相似文献   

2.
Summary Laboratory tests were carried out to examine the orientation behavior of adult Eastern red-spotted newts (Notophthalmus viridescens) to earth-strength magnetic fields. Groups of 30 to 40 newts were housed in water-filled, all-glass aquaria with an artificial shoreline at one end. The aquaria were located in a greenhouse or outdoors adjacent to the laboratory building, and aligned on either the magnetic north-south or east-west axis. Tests were carried out in an enclosed indoor arena. Newts were tested in four horizontal alignments of the magnetic field: the ambient magnetic field (magnetic north at North) and three altered fields (magnetic north rotated to East, South or West). Data were analyzed after pooling the magnetic bearings from all four conditions in such a way as to retain the component of the newts' orientation that was a consistent response to the magnetic field. Elevation of training tank water temperature was used to increase the newts' motivation to orient in the direction of shore. Newts exposed to a training tank water temperature of 33–34 °C just prior to testing exhibited consistent unimodal magnetic compass orientation. The direction of orientation was altered predictably by changing training tank alignment and location relative to the laboratory building. The results provide the first evidence of a strong, replicable magnetic compass response in a terrestrial vertebrate under controlled laboratory conditions. Further, the present study demonstrates that the Eastern newt is able to learn a directional response relative to the earth's magnetic field.  相似文献   

3.
We provide evidence for the use of a magnetic compass for y-axis orientation (i.e., orientation along the shore-deep water axis) by tadpoles of the European common frog (Rana temporaria). Furthermore, our study provides evidence for a wavelength-dependent effect of light on magnetic compass orientation in amphibians. Tadpoles trained and then tested under full-spectrum light displayed magnetic compass orientation that coincided with the trained shore-deep water axes of their training tanks. Conversely, tadpoles trained under long-wavelength (≥500 nm) light and tested under full-spectrum light, and tadpoles trained under full-spectrum light and tested under long-wavelength (≥500 nm) light, exhibited a 90° shift in magnetic compass orientation relative to the trained y-axis direction. Our results are consistent with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength (≥500 nm) light is due to a direct effect of light on the underlying magnetoreception mechanism. These findings also show that wavelength-dependent effects of light do not compromise the function of the magnetic compass under a wide range of natural lighting conditions, presumably due to a large asymmetry in the relatively sensitivity of antagonistic short- and long-wavelength inputs to the light-dependent magnetic compass.  相似文献   

4.
The Earth's geomagnetic field (GMF) is known to act as a sensory cue for magnetoreceptive animals such as birds, sea turtles, and butterflies in long‐distance migration, as well as in flies, cockroaches, and cattle in short‐distance movement or body alignment. Despite a wealth of information, the way that GMF components are used and the functional modality of the magnetic sense are not clear. A GMF component, declination, has never been proven to be a sensory cue in a defined biological context. Here, we show that declination acts as a compass for horizontal food foraging in fruit flies. In an open‐field test, adopting the food conditioning paradigm, food‐trained flies significantly orientated toward the food direction under ambient GMF and under eastward‐turned magnetic field in the absence of other sensory cues. Moreover, a declination change within the natural range, by alteration only of either the east–west or north–south component of the GMF, produced significant orientation of the trained flies, indicating that they can detect and use the difference in these horizontal GMF components. This study proves that declination difference can be used for horizontal foraging, and suggests that flies have been evolutionarily adapted to incorporate a declination compass into their multi‐modal sensorimotor system.  相似文献   

5.
In view of the finding that cryptochrome 1a, the putative receptor molecule for the avian magnetic compass, is restricted to the ultraviolet single cones in European Robins, we studied the orientation behaviour of robins and Australian Silvereyes under monochromatic ultraviolet (UV) light. At low intensity UV light of 0.3 mW/m2, birds showed normal migratory orientation by their inclination compass, with the directional information originating in radical pair processes in the eye. At 2.8 mW/m2, robins showed an axial preference in the east–west axis, whereas silvereyes preferred an easterly direction. At 5.7 mW/m2, robins changed direction to a north–south axis. When UV light was combined with yellow light, robins showed easterly ‘fixed direction’ responses, which changed to disorientation when their upper beak was locally anaesthetised with xylocaine, indicating that they were controlled by the magnetite-based receptors in the beak. Orientation under UV light thus appears to be similar to that observed under blue, turquoise and green light, albeit the UV responses occur at lower light levels, probably because of the greater light sensitivity of the UV cones. The orientation under UV light and green light suggests that at least at the level of the retina, magnetoreception and vision are largely independent of each other.  相似文献   

6.
Previous studies have demonstrated the presence of a light‐dependent magnetic compass in a urodele amphibian, the eastern red‐spotted newt Notophthalmus viridescens, mediated by extraocular photoreceptors located in or near the pineal organ. Newts tested under long‐wavelength (≥500 nm) light exhibited a 90° shift in the direction of orientation relative to newts tested under full spectrum (white) or short‐wavelength light. Here we report that bullfrog tadpoles Rana catesbeiana (an anuran amphibian) exhibit a 90° shift in the direction of magnetic compass orientation under long‐wavelength (≥500 nm) light similar to that observed in newts, suggesting that a common light‐dependent mechanism mediates these responses. These findings suggest that a light‐dependent magnetic compass may have been the ancestral state in this group of vertebrates.  相似文献   

7.
Sky islands provide ideal opportunities for understanding how climatic changes associated with Pleistocene glacial cycles influenced species distributions, genetic diversification, and demography. The salamander Plethodon ouachitae is largely restricted to high‐elevation, mesic forest on six major mountains in the Ouachita Mountains. Because these mountains are separated by more xeric, low‐elevation valleys, the salamanders appear to be isolated on sky islands where gene flow among populations on different mountains may be restricted. We used DNA sequence data along with ecological niche modelling and coalescent simulations to test several hypotheses related to diversifications in sky island habitats. Our results revealed that P. ouachitae is composed of seven well‐supported lineages structured across six major mountains. The species originated during the Late Pliocene, and lineage diversification occurred during the Middle Pleistocene in a stepping stone fashion with a cyclical pattern of dispersal to a new mountain followed by isolation and divergence. Diversification occurred primarily on an east–west axis, which is likely related to the east–west orientation of the Ouachita Mountains and the more favourable cooler and wetter environmental conditions on north slopes compared to south‐facing slopes and valleys. All non‐genealogical coalescent methods failed to detect significant population expansion in any lineages. Bayesian skyline plots showed relatively stable population sizes over time, but indicated a slight to moderate amount of population growth in all lineages starting approximately 10 000–12 000 years ago. Our results provide new insight into sky island diversifications from a previously unstudied region, and further demonstrate that climatic changes during the Pleistocene had profound effects on lineage diversification and demography, especially in species from environmentally sensitive habitats in montane regions.  相似文献   

8.
Juvenile chinook salmon, Oncorhynchus tschawytscha , kept under artificial light in a rectangular holding tank aligned east/west for 18 months, showed a preferred temporal and directional orientation of 270° with respect to water flow and the source of food.
Individual fish transferred from the holding/training tank to an unfamiliar circular test arena in another room devoid of local directional cues showed a mean of means preferred unimodal orientation of 264°.
Controlled re-introduction of individual stimuli revealed a hierarchy of orientation cues; one of these was a response to magnetism. A 90° clockwise shift in the horizontal component of the earth's magnetic field was followed by a significant change in the mean of means axial orientation, for the fish under test, from 258°/78° to 354°/174°. After restoration of the normal magnetic field the mean of means axial orientation reverted to 274°/94°.  相似文献   

9.
We investigated homogeneity of growth and development as indices of developmental stability in sibling tadpoles from two sampling regions of the common frog, Rana temporaria. One region is characterized by relatively warm breeding ponds with a short activity season (`north'), and one by relatively cool breeding ponds and a long activity season (`south'). Tadpoles from the two regions were raised in three different temperatures selected to mimic the natural variation throughout the range. The results show that (1) north tadpoles respond with a relatively greater increase in growth with increased temperature than south tadpoles, (2) mean growth rate and its coefficient of variation were negatively correlated in the temperature regime in which a population was primarily under selection in the wild, whereas no such correlation was found at temperatures more seldom encountered in the natural populations, (3) phenotypic and genetic correlations between morphological traits within individuals were positive and were relatively higher in north than south tadpoles in the warm treatment, but higher for south tadpoles in the cold treatment and (4) across thermal environments, south tadpoles showed significant genetic correlations, whereas the correlations for north tadpoles were not significantly different from zero. South tadpoles showed only positive genetic correlations (n=30), whereas 14 of 30 correlation coefficients were negative in north tadpoles. In conclusion, developmental stability for growth and morphometry was higher at `optimal' conditions and decreased at the tail ends of the reaction norms within regions, with marked differences reflecting selection history between regions.  相似文献   

10.
In addition to other sensory modalities, migratory vertebrates are able to use the earths’ magnetic field for orientation and navigation. The magnetic cue may also serve as a reference for other orientation mechanisms. In this study, significant evidence is shown that, even in darkness, newts (Notophthalmus viridescens, Salamandridae) spontaneously align according to the natural or to the deviated earth’s magnetic field lines, thereby demonstrating a magnetic compass sensitivity. All newts preferred compass directions close to east or west or chose the E/W axially and hence sought to maintain a specific angle or axis relative to the magnetic field vector. Such an active alignment is considered an essential precondition for magnetic orientation. When the horizontal magnetic vector was experimentally compensated, animals became disoriented. We infer that the animals have either learned the preferred magnetic direction/axis individually or that these choices are innate and could even be seasonally different as in migrating birds. It is still an unanswered question as to how and where the physical and physiological mechanisms of magnetic transduction and reception take place. The visual system and other light-dependent (radical pairs) mechanisms alone are often claimed to be in function, but this must now be reconsidered given the results from animals when deprived of light. The results may therefore point to putative receptor mechanisms involving magnetite elements in specialized magneto-receptors.  相似文献   

11.
Previous studies have shown that migrating palmate newts (Lissotriton helveticus) can rely on acoustic cues for orientation to breeding ponds. Nonetheless, although acoustic cues are reliable over relatively short distances, they are unlikely to account for the long‐distance homing demonstrated in several other species of newts. Most individuals of L. helveticus migrate only a few hundred meters (Diego‐Rasilla, F. J. & Luengo, R. M. 2007: Acoustic orientation in the palmate newt, Lissotriton helveticus. Behav. Ecol. Sociobiol. 61, 1329—1335), raising the possibility that this species may only utilize short‐distance cues (Joly, P. & Miaud, C. 1993: How does a newt find its pond? The role of chemical cues in migrating newts (Triturus alpestris). Ethol. Ecol. Evol. 5, 447—455; Russell, A. P., Bauer, A. M. & Johnson, M. K. 2005: Migration of amphibians and reptiles: an overview of patterns and orientation mechanisms in relation to life history strategies. In: Migration of Organisms (Elewa, M. T., ed). Springer‐Verlag, Berlin Heidelberg, pp. 151—203; Sinsch, U. 2006: Orientation and navigation in Amphibia. Mar. Freshw. Behav. Phy. 39, 65—71). Therefore, experiments were carried out to investigate the use of the geomagnetic field in the nocturnal homing orientation of L. helveticus. Tests were carried out at night in an outdoor circular arena, under total overcast sky that prevented access to celestial compass cues. Individual newts were tested in one of four symmetrical alignments of an earth‐strength magnetic field. We studied the orientation behaviour of newts from two breeding ponds located 9.05 km west‐southwest and 19 km east‐northeast of the testing site. The distribution of magnetic bearings from both groups of newts exhibited significant orientation in the homeward direction. These findings indicate that palmate newts are capable of long‐distance homing and are able to orient in the homeward direction at night using the magnetic compass as the sole source of directional (i.e., compass) information.  相似文献   

12.
The diversity of a region reflects both local diversity and the turnover of species (beta diversity) between areas. The angiosperm flora of eastern Asia (EAS) is roughly twice as rich as that of eastern North America (ENA), in spite of similar area and climate. Using province/state‐level angiosperm species floras, we calculated beta diversity as the slope of the relationship between the log of species similarity (S ) and either geographic distance or difference in climate. Distance‐based beta diversity was 2.6 times greater in the north–south direction in EAS than in ENA and 3.3 times greater in the east–west direction. When ln S was related to distance and climate difference in multiple regressions, both distance and climate PC1 were significant effects in the north–south direction, but only geographic distance had a significant, unique influence in the east–west direction. The general predominance of distance over environment in beta diversity suggests that history and geography have had a strong influence on the regional diversity of these temperate floras.  相似文献   

13.
The systematic structure and postglacial population history of the freshwater amphipod Gammarus lacustris were explored in an allozyme survey of 65 populations across Northern Europe. A strong multilocus pattern of differentiation discriminated populations of the north‐east (north‐eastern Norway, northern Finland) from those in the west and the south (southern and central Scandinavia, Denmark, Poland). This principal division is attributed to postglacial colonization of the area by two main refugial races or lineages, one from the east (Russia), the other from the south (north‐western European continent). The strongly diverged Eastern and Western races (Nei's D= 0.3, from 22 loci) now meet in a secondary contact zone across a narrow sector of northernmost Norway. Genetic population compositions in this zone vary in a mosaic pattern, and show no evidence of reproductive incompatibility. Similar contacts of eastern and western lineages, far older than the latest glaciation, are now known from a number of taxa and they constitute a general pattern in Fennoscandian phylogeography. Within the Western Gammarus race, the populations through coastal north‐western Norway are further distinguished from those in southern Scandinavia and Denmark by a set of unique alleles at high frequencies (D = 0.12). This suggests an independent early colonization of the coastal region by another distinct stock, either along an early deglaciated coastal corridor from the south‐west, or directly from the ice‐free continental shelf off the Norwegian coast – a hypothesis that has also previously been presented for G. lacustris, and parallels controversial suggestions of local refugia for other taxa in Scandinavia. The coastal population type only later could come into contact with Gammarus invading over the mountains from the south; these two population types now smoothly intergrade. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 79, 523–542.  相似文献   

14.
Organisms with vast distributions often represent geographical mosaics of cryptic species. The black fly Simulium (Wilhelmia) lineatum is among the most widely distributed members of the family Simuliidae, ranging from the British Isles to eastern China. Rather than viewing S. lineatum as a possible aggregate of multiple species, taxonomists have suggested a more inclusive taxon with additional synonyms. Accordingly, S. lineatum is an ideal candidate for testing the hypothesis that a wide geographical distribution signals the presence of more than one species. A cytogenetic approach was used to probe the macrogenome of S. lineatum and other taxa proposed by taxonomists as conspecific. The banding patterns in the polytene chromosomes of 480 larvae from 15 countries across the Palearctic Region revealed 128 rearrangements of the complement. All rearrangements were autosomal and 89% were inversions nonrandomly distributed among species and among chromosome arms. The analyses clarify long‐standing confusion over previously proposed names and reveal a longitudinal succession of four species sequentially replacing one another from west to east: Simulium lineatum s.s., Simulium balcanicum, Simulium turgaicum, and Simulium takahasii. Thus, S. turgaicum is recalled from synonymy and the other three species are validated. Within the most‐represented species, S. balcanicum, the frequency of inversions follows a longitudinal gradient with a north–south bias; as the distance between the sites increases along this north‐west–south‐east axis, the similarity of inversion frequencies between sites decreases. Validation of the concept that broadly distributed black flies are composites of structurally similar species provides a framework for guiding discovery of additional biodiversity. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 163–183.  相似文献   

15.
European eel migrate from freshwater or coastal habitats throughout Europe to their spawning grounds in the Sargasso Sea. However, their route (∼ 6000 km) and orientation mechanisms are unknown. Several attempts have been made to prove the existence of magnetoreception in Anguilla sp., but none of these studies have demonstrated magnetic compass orientation in earth-strength magnetic field intensities. We tested eels in four altered magnetic field conditions where magnetic North was set at geographic North, South, East, or West. Eels oriented in a manner that was related to the tank in which they were housed before the test. At lower temperature (under 12°C), their orientation relative to magnetic North corresponded to the direction of their displacement from the holding tank. At higher temperatures (12–17°C), eels showed bimodal orientation along an axis perpendicular to the axis of their displacement. These temperature-related shifts in orientation may be linked to the changes in behavior that occur between the warm season (during which eels are foraging) and the colder fall and winter (during which eels undertake their migrations). These observations support the conclusion that 1. eels have a magnetic compass, and 2. they use this sense to orient in a direction that they have registered moments before they are displaced. The adaptive advantage of having a magnetic compass and learning the direction in which they have been displaced becomes clear when set in the context of the eel’s seaward migration. For example, if their migration is halted or blocked, as it is the case when environmental conditions become unfavorable or when they encounter a barrier, eels would be able to resume their movements along their old bearing when conditions become favorable again or when they pass by the barrier.  相似文献   

16.
  • 1 We examined spatial patterns in population characteristics (density, biomass, mean body length) and physiological condition (lipid content, length‐weight) of the amphipod Diporeia spp. in Lake Michigan by collecting samples at up to 85 sites in late summer 1994 and 1995. Variables were examined relative to water depth and three lake regions: south, central and north. Most major river systems are found in the south, and this region is more nutrient‐enriched compared to the north.
  • 2 Over all sites, mean density was 5240‐2, biomass was 4.1g dry wt m‐2, and mean body length was 5 mm. While maximum densities were related to depth, with a peak at 30–70 m, greatest densities occurred on the west side of the lake, and low densities were found in the south‐east, north‐east and lower Green Bay. High densities in the west probably resulted from upwelling, and reduced densities in the south‐east may reflect food competition with Dreissena polymorpha (zebra mussel).
  • 3 Lipid content, weight per unit length, and mean length declined with increased water depth, but depth‐related trends were most evident in the south. Overall, mean lipid content and weight per unit length were significantly lower in the south (16.6% dry wt, 0.59 mg at 5 mm body length) compared to the north (23.7% dry wt, 0.78 mg at 5 mm body length). These regional differences may have resulted from greater diatom availability in the north and competition from D. polymorpha in the south. Triacylglycerols and phospholipids were the dominant lipid classes in all three regions. Although the mean proportion of triacylglycerols, the energy‐storage lipid, was lower in the south than in the north, regional differences in proportions of lipid classes were not significant.
  • 4 Mean lipid content and weight per unit length of Diporeia in the south were lower than values found in the late 1980s prior to the establishment of Dreissena. Mean lipid content of mature individuals is now at levels considered a minimum for successful reproduction.
  相似文献   

17.
Magnetic alignment (MA) results from the preference of animals to align themselves along the field lines of the geomagnetic field, a behavioural expression of a magnetic sense. MA is well documented for ruminants and might demonstrate a general magnetic sensory ability among artiodactyls. We measured body‐axis alignment in 1614 foraging or resting wild boars Sus scrofa, 1849 wild boar beds, and 1347 warthogs Phacochoerus africanus, and found a highly significant north–south preference. The magnetic field was the only common denominator of all observations. Thus, we provide the first data suggesting a magnetic sense in the Suidae.  相似文献   

18.
Effects of different combinations of stressors (viz. temperature, food level) on growth, developmental and survival rates of Rana temporaria tadpoles from two geographically widely (∼ 1500 km) separated populations were studied in a common garden experiment. In both populations, low temperature and low food level lead to towered growth rates and delayed metamorphosis, whereas high temperature and high food level had the opposite effect. Tadpoles from north metamorphosed earlier and exhibited higher growth rates than tadpoles from south, suggesting local adaptation to shorter growth period and cooler ambient temperature in north. Size at metamorphosis did not differ between the two populations, but when the differences in metamorphic age were accounted for, then the tadpoles from north were larger than those from south. These results suggest considerable adaptive genetic differentiation in growth rates, size and timing of metamorphosis between northern and southern R. temporaria populations. In both populations, high food levels tended to reduce tadpole survival rates and there was a negative correlation between growth and survival rates across different treatments in both populations. In general, tadpoles from north experienced high mortality rates in high food level - low temperature treatments, whereas southern tadpoles experienced high mortality in high food level-high temperature treatments. This suggest that there may be genetic differences among different populations as how they would be influenced by high nutrient loads, such as brought along for example by fertilization of forest or agricultural soils.  相似文献   

19.
Aim Our aim is to examine the historical breach of the geoclimatic barrier of the Rocky Mountains by the mountain pine beetle (Dendroctonus ponderosae Hopkins). This recent range expansion from west of the North American continental divide into the eastern boreal forest threatens to provide a conduit to naïve pine hosts in eastern North America. We examine the initial expansion events and determine potential mechanism(s) of spread by comparing spread patterns in consecutive years to various dispersal hypotheses such as: (1) meso‐scale atmospheric dispersal of insects from source populations south‐west of the Rocky Mountains in British Columbia (i.e. their historical range), (2) anthropogenic transport of infested plant material, and (3) spread of insect populations across adjacent stands via corridors of suitable habitat. Location British Columbia, Canada. Methods We explore potential mechanism(s) of invasion of the mountain pine beetle using spatial point process models for the initial 3 years of landscape‐level data collection, 2004–2006. Specifically, we examine observed patterns of infestation relative to covariates reflecting various dispersal hypotheses. We select the most parsimonious models for each of the initial 3 years of invasion using information criteria statistics. Results The initial range expansion and invasion of the beetle was characterized by aerial deposition along a strong north‐west to south‐east gradient, with additional aerial deposition and localized dispersal from persisting populations in following years. Main conclusions Following deposition of a wave front of mountain pine beetles parallel to the Rocky Mountains via meso‐scale atmospheric dispersal, the areas of highest intensity of infestations advanced up to 25 km north‐east towards jack pine (Pinus banksiana) habitat in a single year. There appeared to be no association between putative anthropogenic movement of infested materials and initial range expansion of the mountain pine beetle across the continental divide.  相似文献   

20.
A high altitude shrub birch from Bhutan, south‐east Tibet, north‐west Yunnan and western Sichuan, which has been referred to the tetraploid Betula utilis, is shown to be a distinct diploid species, described here as Betula ashburneri McAllister & Rushforth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号