首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of deep placement and surface application of urea fertilizer on the yield of rice grown in pots of alluvial clay soil covered with 5 cm water was studied under controlled conditions. Application of two levels of urea supergranules and prills (2 g and 4 g urea/0.1 m2) on the surface of submerged soil increased the vegetative growth and enhanced the grain yield as much as 85%. However, no difference in yield was found between urea prills applied in three split doses and one application of urea supergranules.Deep placement of two levels of urea supergranules in the soil at four different depths (2.5, 5.0, 10.0 and 15.0 cm) resulted in the highest yields. The fertilizer was most efficient when the highest concentration was placed in the soil at a depth of 5.0 cm. This application method increased the grain yield by 20% as compared with the soil surface application.  相似文献   

2.
Summary Lowland rice (RD 3) was cultivated in containers of clay soil submerged with 5 cm water under controlled conditions in the phytotron. Deep placement of urea supergranules 5 cm in the soil significantly enhanced both plant growth and fertilizer efficiency when the plants were cultivated under high light intensity (70 Wm–2). At the highest urea level grain yield increased 119% above the control level, while growth and fertilizer efficiency was not as high when deep placement of calcium nitrate was used.The application of urea prills and calcium nitrate (18.4g Nm–2) in two split doses on the soil surface increased grain yield as much as 91% above the control level. At the lower nitrogen concentration (9.2 g N m–2), the urea prills were more efficient than calcium nitrate as indicated by the grain yield. The height of those plants fertilized by surface application was affected by the concentration and not the type of fertilizer. The number of tillers, however, was significantly higher on urea fertilized plants.When the rice plants were cultivated under low light intensity 930 Wm–2), neither the nitrogen fertilizers nor the method of application had a significant effect on growth and yield.  相似文献   

3.
Summary About 8.4 per cent of applied nitrogen was lost as ammonia during a week after application when prilled urea was broadcast or banded and incorporated in soil 20 days after sowing of rice. Ammonia volatilization was reduced to 3.3 per cent when urea supergranules (USG) were used. Coating of USG with DCD or neem cake showed no advantage. Ammonia volatilization was only 0.7 to 1.6 per cent when fertilizer was applied at panicle initiation stage of rice; highest values were again obtained with prilled urea. The experiments were carried out in closed cages.  相似文献   

4.
Summary The effect of different methods of nitrogen fertilizer application on the algal flora and biological nitrogen fixation (Acetylene-reducing activity) in a wetland rice soil was studied in pot and field experiments. Broadcast application of urea inhibited nitrogen fixation and favored the growth of green algae. In contrast, deep placement of urea supergranules (1–2 g urea granules) did not suppress the growth of N2-fixing blue-green algae and permitted acetylene-reducing activity on the soil surface to continue virtually uninhibited.  相似文献   

5.
Summary Field experiments were conducted to assess the efficiency of different forms and methods of urea application for direct sown rice under intermediate deep water situation (15–50 cm). Basal application of N @ 40 kg/ha in the form of prilled urea (PU); urea super granules (USG); and sulphur coated urea (SCU); were tested with a view to improving the early vigour, tillering and grain yield. Deep placement of prilled urea behind a plough; USG placement between rows in moist soil; and also in shallow water were found to increase the recovery of nitrogen. There was no deleterious effect on stand establishment when the seed and fertilizer @ 40, 8.6 and 16.6 kg N, P and K per hectare respectively were drilled in the same furrow in moist soil. Split application of either conditioned urea or application as a foliar spray did not prove effective in an intermediate deep water rice situation.  相似文献   

6.
Summary Under intermediate deepwater condition with water depths of 15–35 cm during most of the crop growth period, sulphur coated urea and urea supergranule placement was superior to prilled urea in increasing the relative uptake and grain yield (23–25%) of rice. A semi-tall variety (CR 1016) responded better to the nitrogen application than a tall variety (CR 1030).The crop fertilized with N produced more number of tillers and grain yield than the unfertilized crop under complete submergence for 6 days at seedling establishement stage (8 days after transplanting) followed by waterlogging of 25±5 cm throughout the crop growth period. Application of phosphorus together with nitrogen increased the grain yield (9–14%) over nitrogen alone. Crop fertilized with these two nutrients (NP) increased their uptake and yield components.  相似文献   

7.
In an effort to provide an explanation for the reported variability in fertilizer N efficiency from deepplaced urea on flooded rice, a set of controlled experiments was conducted to evaluate the effect of water percolation on fertilizer loss and plant uptake from15N labeled urea supergranules. Three soils of different texture (silt loam-clay) were subjected to various percolation rates (0–20 mm/day) while planted to rice which was harvested after approximately 40 days.The results indicate that moderate to high percolation through silt loam soil will lead to significant fertilizer N losses and drastically decrease the fertilizer uptake by plants. The permeability of the clay soil was too low for any leaching to take place. It is therefore concluded that deep placement of urea supergranules not be recommended in soils where percolation rates may exceed 5 mm/day, particularly if the cation exchange capacity of the soil is low. This experiment points to the need of evaluating and reporting the percolation rates in soils where experiments with supergranular urea are conducted.Contribution from the Agro-Economic Division of the International Fertilizer Development Center (IFDC), Muscle Shoals, Alabama 35660.  相似文献   

8.
Summary As part of a research program to determine the fate of N fertilizers applied to dryland sorghum in the semi-arid tropics,15N balance studies were conducted with various N sources in the greenhouse. Two American soils, Houston Black clay (Udic Pellustert) and Windthorst sandy loam (Udic Paleustalf), similar in properties to the Vertisol and Alfisol in the semi-arid tropics of India, were employed. Experiments were conducted with large pots containing 20 or 60 kg of soil which was subjected to several watering regimes. The15N not accounted for in the plant and soil was presumably lost. Losses of N on calcareous Houston Black clay were greatest for broadcast urea, 16%–28%. Amendment of broadcast urea with 2% phenyl phosphorodiamidate, a urease inhibitor, reduced N losses only slightly to 15%–20%. Point placement of urea at a 6 cm soil depth reduced losses to 1%–11%. Granule size had no effect on N loss from point-placed urea. Ammonia volatilization was apparently the main N loss mechanism, since N losses from sodium nitrate were less than 7%, except when the soil surface was waterlogged. N losses on the Windthorst soil averaged 30% from urea and 11% from ammonium nitrate. Amendment of urea with urea phosphate to form a 27% N and 13% P product reduced fertilizer N losses but did not increase grain yield on Windthorst soil. N losses were also less from ammonium nitrophosphate than from urea. Band and point placement of urea 6 cm below the soil surface were equally effective in reducing N loss on Houston Black clay. The findings give credence to the recommendation of deep band placement for urea in the semi-arid tropics.  相似文献   

9.
Summary Studies revealed that Zn-deficiency symptoms were induced markedly by the levels of nitrogen and its source in rainfed lowland rice grown on calcareous soil. Visual Zn-deficiency symptoms recorded 3 weeks after transplanting showed that increased supply of nitrogen at puddling resulted in significant increase in the extent of deficiency symptoms of this nutrient element. Zn-deficiency symptoms got aggravated with Mussorrie Rock Phos-coated urea (MRPCU) followed by sulphur-coated urea (SCU). Zn-deficiency symptoms induced by urea supergranules (USG) and prilled urea (PU) supplying two-thirds of nitrogen as basal were found to be of moderate level. No symptoms of Zn-deficiency were noted with no-nitrogen control.  相似文献   

10.
15N标记水稻控释氮肥对提高氮素利用效率的研究   总被引:42,自引:0,他引:42  
本文应用^15N示踪技术研究了水稻对空控释氮肥和尿素氮吸收利用效率的影响以及氮的去向,结果表明:施肥后11天内,水稻控释氮肥和尿素的NH3挥发损失分别占施入氮量的0.69%和1.81%,NH3的挥发损失在施肥后第5天时达到最大值,此后逐渐降低。水稻控释氮肥和尿素氮的淋溶损失分别占施入氮量的0.95%和1.02%,水稻控释氮肥氮的淋溶损失在水稻整个生长期间均比较平缓,施肥后40天时略有上升,此后又缓慢降低。用氮素平衡帐中的亏缺量和缺量扣除氨的损失量后计为硝化-反硝化损失量的结果表明,水稻控制氮肥氮的硝化-反硝化损失量占施氮量的3.46%,而尿素氮在硝化-反硝化损失量却高达37.75%,肥料氮在土壤中的残留主要集中在0~35cm的土层中,达91.4%-91.5%,残留在35cm以下土层中的氮甚微,水稻控制氮肥残留在土壤中的氮量略高于尿素处理。水稻控释氮肥利用率高达73.8%,比尿素高出34.9%,水稻控释氮肥氮利用率高的原因是因氮从颗粒中缓慢释放、受淋溶、氨挥发、尤其受硝化-反硝化途径损失的氮较少。在施等氮量的条件下,施用水稻控制氮肥的稻谷产量比尿素的增产25.5%,达到p=0.05的显著水平。  相似文献   

11.
Summary Field experiments showed that soil compaction did not affect wheat yield significantly under rainfed conditions. Weed population was significantly reduced due to soil compaction. Compaction decreased total moisture use and increased water use efficiency. There was better and profitable utilization of stored soil moisture from the compaction treatments as compared to no compaction treatment.Placement of nitrogen about 10 to 15 cm deep in the soil directly below the seed resulted in significant increase in the yield of wheat crop grown under rainfed conditions. Weed population was not affected due to nitrogen placement. Total moisture use reduced due to nitrogen placement. Under rainfed conditions, deep placement of nitrogen was important for increasing the efficiency of fertilizer as well as water utilization by wheat crop.  相似文献   

12.
通过2017—2018两年田间试验,研究了不同土层深度配施缓释(PCU)/普通尿素(PU)对0~30 cm土层土壤无机氮含量、酶活性和玉米产量的影响。试验设置不施氮肥(CK)、普通尿素一次施肥(PU1,5~10 cm土层)、普通尿素传统两次施肥(PU2,5~10 cm土层,60%种肥+40%追肥)、普通尿素一次分层施肥(PU3,5~10 cm土层20%N+15~20 cm土层30%N+25~30 cm土层50%N)、不同土层深度缓释/普通尿素配施[PCU1~PCU4,均为5~10 cm土层20%N(普通尿素)+15~20 cm土层30%N(配施)+25~30 cm土层50%N(配施),其中PCU1~PCU4的15~20和25~30 cm土层PCU:PU分别为3:7、3:7,5:5、5:5, 3:7、5:5, 5:5、3:7]共8个处理。结果表明: 与CK相比,PU1能够满足玉米生育前期对0~10 cm土层氮素的需求,PU2和PU3能够满足玉米发育前期对10~30 cm土层氮素的需求,不同土层深度配施缓释/普通尿素能够满足玉米整个生育时期对氮素的需求。与PU1~PU3相比,不同土层深度配施缓释/普通尿素可显著增加灌浆期和成熟期10~20和20~30 cm土层NO3--N、NH4+-N、碱解氮含量和脲酶、蛋白酶活性。与PU3相比,不同土层深度配施缓释/普通尿素处理2017和2018年玉米产量分别提高2.3%~24.6%和1.3%~16.5%,PCU4产量最高,分别达13899和12439 kg·hm-2。因此,不同土层深度配施缓释/普通尿素既能满足玉米生育前期对氮素的需求,也能提高生育后期10~30 cm土层土壤无机氮含量和酶活性,促进玉米生长,增加玉米产量,其中PCU4处理施肥方式最佳。  相似文献   

13.
Summary The application of ball-type fertilizers into the reduced layer of paddy soil increased grain number and uptake of nitrogen by rice plants. However, because filled grain percentage tended to decrease with increased grain number, the grain yield of lowland rice was not consistently increased by the application of ball-type fertilizer.Rice varieties differed in their response to large-sized fertilizers. For early maturing varieties basal application was best for increasing grain number and yield. For the medium-maturing varieties, such as IR26, deep placement of the ball-type fertilizer seemed favorable during the period from transplanting to 30 to 40 days before heading. re]19751126  相似文献   

14.
育秧箱全量施肥对水稻产量和氮素流失的影响   总被引:9,自引:0,他引:9  
采用育秧箱全量施肥技术,通过2年田间小区试验,研究中量控释氮肥(80 kg N·hm-2)、高量控释氮肥(120kgN·hm-2)和常规施肥(300 kg N·hm-2)处理对水稻产量和氮素流失的影响.结果表明:与常规施肥相比,高量控释氮肥处理的水稻产量未显著降低.常规施肥处理2年平均氮素利用率为33.2%,中量和高量控释氮肥处理的平均氮素利用率分别比常规施肥处理提高26.2%和20.7%.常规施肥处理田面水的总氮含量在施肥后1~3d达最大值,中量和高量控释氮肥处理的高峰期为施肥后7~9d,全生育期内,中量和高量控释氮肥处理田面水的总氮含量均显著低于常规施肥处理.常规施肥处理的氮素渗漏流失主要在分蘖期,中量和高量控释氮肥处理的氮素渗漏流失后移至分蘖-开花期.各处理硝态氮流失量占总氮流失量的59.7%~64.2%,高量控释氮肥处理的总氮净流失量比常规施肥处理减少51.8%.  相似文献   

15.
太湖地区稻田氮肥吸收及其利用的研究   总被引:11,自引:2,他引:9  
宋勇生  范晓晖 《应用生态学报》2003,14(11):2081-2083
The effects of different amounts and kinds of nitrogen fertilizer on rice yield and its nitrogen uptake and utiliza-tion were studied on a main paddy soil (Wushan soil) of Taihu area. The results indicated that the optimal amount of nitrogen fertilizer was about 180 kg N· hm-2 for rice production. Applying ammonium sulfate was better than applying urea for increasing rice yield. The efficiency of nitrogen fertilizer in this experiment was about 41.8-48.5%, and its loss was 22.8-38.1% .  相似文献   

16.
采用田间盆栽试验,研究生化抑制剂与生物刺激素腐植酸结合制成的高效稳定性增效尿素肥料在黄土中的氮素转化特征、增产效果和氮素肥料表观利用率,以探明其施用效果,为开发适宜黄土施用的新型增效尿素肥料提供理论依据。本研究以不施氮肥(CK)和施尿素氮肥(N)为对照,在尿素中分别添加腐植酸(F)、N-丁基硫代磷酰三胺(NBPT)、3,4-二甲基吡唑磷酸盐(DMPP)和2-氯-6-三甲基吡啶(CP),以及腐植酸与3种生化抑制剂分别组合(NBPT+F、DMPP+F、CP+F)。结果表明: 与N处理相比,F、NBPT+F、DMPP+F和CP+F处理均能显著提高玉米的产量、叶片叶绿素含量、叶面积指数和植株吸氮量,对土壤铵态氮和硝态氮含量也有显著影响。与单独施用生化抑制剂相比,添加腐植酸可提高玉米叶片叶绿素含量。与CP相比,CP+F玉米的植株吸氮量、叶绿素含量、氮肥吸收利用率均显著提高;与NBPT相比,NBPT+F硝化抑制率提高10.7%,但玉米产量、叶面积指数、植株吸氮量和氮肥利用率等均有所降低;与DMPP相比,DMPP+F显著降低了玉米产量、叶面积指数、植株吸氮量、氮肥利用率和硝化抑制率等。综合玉米产量、植株吸氮量、氮肥吸收利用率以及土壤铵态氮、硝态氮含量等指标,在黄土地区施用尿素肥料时,建议添加腐植酸和CP以提升尿素性能,从而提高产量和肥料利用率。  相似文献   

17.
A better understanding of nitric oxide (NO) emission from a typical rice-wheat agroecosystem in eastern China is important for calculating the regional inventory and to propose effective NO mitigation options. Nitric oxide flux measurements by static chamber method were made from treatments of conventional nitrogen-fertilizer (NPK plus urea) application, no-nitrogen application, and nitrogen-fertilizer with incorporation of wheat straw residue for an entire rotation period (June 2002 to June 2003). During the wheat growing season two further treatments of fertilizer without crops planted and bare soil without nitrogen (N) fertilization were applied. Total annual NO emissions for the conventional fertilizer, no N fertilizer and fertilizer plus straw application were 0.44?±?0.01, 0.22?±?0.01, and 0.57?±?0.02 kg N ha?1y?1, respectively. On average 27% of this emission occurred during the rice season due to flooding/drainage cycle. The N fertilizer-induced emission factor for the conventional fertilizer treatment was 0.05% of the total N applied. Incorporation of wheat straw in the rice season showed no significant effect on NO flux due to the high C/N ratio of the straw incorporated. During the wheat growing season, NO emissions for all treatments had similar variation pattern controlled by soil moisture dynamics. Total NO emissions in the wheat season for fertilized bare soil (no wheat planted) were 0.389?±?0.01 and 0.21?±?0.01 kg N ha?1 y?1, respectively. The results indicate the importance of N fertilizer and soil moisture to nitrogen loss through the formation of NO.  相似文献   

18.
不同施氮措施对旱作玉米地土壤酶活性及CO2排放量的影响   总被引:5,自引:0,他引:5  
对施用速效氮肥(尿素)和缓释氮肥的旱作夏玉米地土壤酶活性及CO2排放量进行分析。结果表明,与不施肥处理比较,不同氮肥种类和施用量均可显著提高土壤脲酶、蔗糖酶、过氧化氢酶活性和CO2的排放量。在整个生育期,尿素与缓释氮肥处理土壤酶活性和土壤CO2排放量表现出相同变化趋势,尿素和缓释氮肥处理土壤CO2平均排放量分别为459.12 mg·m-·2h-1和427.11 mg·m-·2h-1,两者达到显著差异水平(P<0.5)。相关分析表明,土壤脲酶、蔗糖酶和过氧化氢酶活性与土壤CO2排放量呈显著或极显著正相关,相关系数分别为0.79、0.64和0.80。说明相同施氮量缓释氮肥较尿素能有效提高土壤酶活性并降低土壤碳排放量。  相似文献   

19.
深松与包膜尿素对玉米田土壤氮素转化及利用的影响   总被引:4,自引:0,他引:4  
耕作方式和氮肥施用是影响土壤中氮肥转化、利用效率和作物产量的重要因素。通过夏玉米田的2a(2011—2012)定位试验,研究了两种耕作方式(深松、旋耕)配合不同尿素类型(包膜尿素、普通尿素)的施用对玉米田土壤硝态氮和铵态氮含量、脲酶活性、硝化细菌和反硝化细菌数量、玉米产量以及氮肥农学效率的影响。研究结果表明:相同耕作方式下,包膜尿素处理土壤中脲酶活性较稳定,且增加了旱田土壤亚硝酸细菌数量而降低了反硝化细菌数量,有利于土壤硝态氮含量的提高,尤其是作物生长的中后期;包膜尿素处理的产量比普通尿素提高7.25%—10.82%,同时提高氮肥农学效率。深松处理增加了土壤中的反硝化细菌数量,配合施用包膜尿素进一步提高了土壤脲酶活性,增加了亚硝酸细菌数量;旋耕与包膜尿素配合施用在一段时期内能显著增加土壤硝态氮含量,减少反硝化细菌数量。深松配合包膜尿素处理能够显著的增加玉米产量,2a分别比旋耕配合包膜尿素增加1.41%和10.62%。因此,深松措施配合施用包膜尿素能够增强土壤脲酶活性,增加亚硝酸细菌数量,提高氮素转化速率,增加作物产量和氮肥农学效率,其稳产效果在干旱年份尤为显著。  相似文献   

20.
Summary Field studies with bordered microplots were conducted on an Alfisol in the semiarid tropics of India to determine (1) the fate of15N-labeled urea applied to dryland sorghum in two successive rainy seasons and (2) the effect of method of application on N fertilizer efficiency. Recoveries of15N-labeled fertilizers by above-ground plant parts ranged from 46.7% to 63.6% in 1981 when the rainfall was above the average and from 54.4% to 66.9% in 1980 when the rainfall was near the average. Small (0.014 g) pellets of urea applied twice as postemergent applications in separate 5 cm deep bands were more effective than single preemergent applications either surface applied or incorporated. Both banding and the split applications contributed to overall fertilizer efficiency. Large (1.0 g) pellets of urea (supergranules) placed at a depth of 5 cm were also superior to the incorporated, small-pellet treatment in 1981. The15N-balance data for the soil (0–90 cm in depth)-plant system in 1981 showed that the unaccounted-for fertilizer N ranged from 5.1% to 20.6%. An important finding was that high grain yields, in excess of 6,000 kg/ha, with N fertilizer losses of less than 10% could be obtained through fertilizer management during a very wet season. The data from the Alfisol experiments were compared with data from similar Vertisol experiments; N fertilizer losses resulting from incorporated and surface applications were greater for Vertisols than for Alfisols in the wetter year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号