首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cell reactivity with allergoids: influence of the type of APC   总被引:2,自引:0,他引:2  
The use of allergoids for allergen-specific immunotherapy has been established for many years. The characteristic features of these chemically modified allergens are their strongly reduced IgE binding activity compared with the native form and the retained immunogenicity. T cell reactivity of chemically modified allergens is documented in animals, but in humans indirect evidence of reactivity has been concluded from the induction of allergen-specific IgG during immunotherapy. Direct evidence of T cell reactivity was obtained recently using isolated human T cells. To obtain further insight into the mechanism of action of allergoids, we compared the Ag-presenting capacity of different APC types, including DC and macrophages, generated from CD14+ precursor cells from the blood of grass pollen allergic subjects, autologous PBMC, and B cells. These APC were used in experiments together with Phl p 5-specific T cell clones under stimulation with grass pollen allergen extract, rPhl p 5b, and the respective allergoids. Using DC and macrophages, allergoids exhibited a pronounced and reproducible T cell-stimulating capacity. Responses were superior to those with PBMC, and isolated B cells failed to present allergoids. Considerable IL-12 production was observed only when using the DC for Ag presentation of both allergens and allergoids. The amount of IL-10 in supernatants was dependent on the phenotype of the respective T cell clone. High IL-10 production was associated with suppressed IL-12 production from the DC in most cases. In conclusion, the reactivity of Th cells with allergoids is dependent on the type of the APC.  相似文献   

2.
Microglial activation is one of the earliest and most prominent features of nearly all CNS neuropathologies often occurring prior to other indicators of overt neuropathology. Whether microglial activation in seemingly healthy CNS tissue during the early stages of several is a response to early stages of neuronal or glial distress or an early sign of microglial dysfunction causing subsequent neurodegeneration is unknown. Here we characterize and discuss how changes in the CNS microenvironment (neuronal activity/viability, glial activation) lead to specific forms of microglial activation. Specifically, we examine the potential role that TREM-2 expressing microglia may play in regulating the effector function of autoreactive T cell responses. Thus, we suggest that ubiquitous suppression of microglial activation during CNS inflammatory disorders rather than targeted manipulation of microglial activation, may in the end be maladaptive leading to incomplete remission of symptoms.  相似文献   

3.
4.
In earlier studies we showed that hapten-specific inducer T cell clones specifically induce B cells from immunized donors to secrete IgM antibodies. However, IgG responses were not observed, suggesting that an additional signal(s) was required. In this report, we show that an autoreactive T cell clone produces a factor(s) that collaborates with antigen-specific inducer T cells to promote specific IgG responses. This factor is not restricted by antigen or MHC determinants and promotes IgG production both in vivo and in vitro. These findings suggest that autoreactive cells may play an important role in the regulation of isotype expression.  相似文献   

5.
The cellular and subcellular events governing Ab production with specificity for self Ags are poorly understood. In this study we examined the role of cellular interactions and cytokines in regulating the production of anti-DNA topoisomerase I (topo I) Ab, a major autoantibody in patients with systemic sclerosis (SSc). Topo I-specific T cell clones derived from SSc subjects and healthy donors were cultured with autologous peripheral blood B cells. Anti-topo I Ab production was induced by five of seven topo I-specific T cell clones derived from SSc subjects, but by none of eight T cell clones generated from healthy controls. However, two of the T cell clones from healthy controls provided help to HLA-DR-matched SSc B cells to produce anti-topo I Ab. The analysis of cytokine mRNA expression revealed that the ability to promote anti-topo I autoantibody production was strictly correlated with IL-2 and IL-6 expression by the T cell clones. Kinetic studies showed that IL-2 was required throughout the culture period for maximal autoantibody production and that both MHC-TCR and CD40-CD40L interactions were essential during the early phase of the culture. IL-6 was important in the late phase. Th1 clones (producing IL-2, but no IL-6) and Th2 clones (producing IL-6, but no IL-2) synergically activated autologous B cells to produce anti-topo I Ab. These results indicate that T cell-dependent B cell activation resulting in anti-topo I autoantibody production requires a series of temporally defined cell contact and soluble stimuli.  相似文献   

6.
After stimulation, T cells enter a transient refractory period, promoted by IL-2, during which they are resistant to re-stimulation. We previously demonstrated that these IL-2- and Ag-stimulated refractory T cells are able to suppress the Ag-induced proliferation of naive T cells in vitro. We show here that, after adoptive transfer, these T cells are also able to suppress naive T cell proliferation in vivo. More interestingly, potently suppressive T cells can be generated directly in vivo by stimulation with Ag and supplemental IL-2. The activity of the suppressive cells is dose dependent, and the suppressor and suppressed T cells need not be restricted to the same MHC or Ag. Similar to its role in promoting T cell-mediated suppression in vitro, IL-2 is critical for the induction of suppressive activity in activated T cells in vivo. Supplemental IL-2, however, cannot overcome the suppressive activity in target T cells, indicating that suppression is not mediated by competition for this cytokine. Although the activated T cells block naive T cell proliferation, the naive cells do engage Ag and up-regulate the CD25 and CD69 activation markers after stimulation. Therefore, activated T cells stimulated in the presence of IL-2 develop MHC- and Ag-unrestricted suppressive activity. These results provide a new mechanism for competition among CD4(+) T lymphocytes, in which initial waves of responding T cells may inhibit subsequently recruited naive T cells. They further suggest a novel negative feedback loop limiting the expansion of T cell responses that may be present during vigorous immune responses or after IL-2 immunotherapy.  相似文献   

7.
Distinct roles of IL-1 and IL-6 in human T cell activation   总被引:7,自引:0,他引:7  
We have examined the mechanisms underlying the activation of human T cells by IL-1 and IL-6. We report that PHA-stimulated accessory cell-depleted tonsillar T cells fractionated on the basis of their density show a high degree of heterogeneity in their proliferative response to these cytokines, inasmuch as small dense lymphocytes essentially fail to respond whereas large cells proliferate extensively. This differential response could be ascribed to the fact that only the large cells produced IL-2 under these circumstances, thus providing unequivocal evidence for the existence of an IL-2-mediated step in the activation of human T cells by IL-1 and IL-6. The synergy between IL-1 and IL-6 was found to result from their complementary effects on the production of and response to IL-2, with IL-1 playing a preponderant role in the induction of IL-2, and IL-6 being required, in addition to IL-1, for optimal IL-2-responsiveness. Using small tonsillar T cells, it was possible to show that, concomitant with the enhanced response to IL-2, IL-6 induced a marked increase in cell size and in protein synthesis. In the absence of other factors, this activation was not followed by entry into S phase, suggesting that the essential role of IL-6 in T cell activation is to induce the cells to move from G0 to G1, where they become more responsive to the small amounts of IL-2 induced by IL-1.  相似文献   

8.
Structure of the human type I DNA topoisomerase gene   总被引:7,自引:0,他引:7  
We describe the molecular organization of the human gene coding for type I DNA topoisomerase. The coding sequence is split into 21 exons distributed over at least 85 kilobase pairs (kb) of human genomic DNA. The sizes of the 20 introns vary widely between 0.2 and at least 30 kb and all contain the sequence elements known to be required for pre-mRNA splicing. Several of the intron sequences separate exons encoding parts of the enzyme that are highly conserved between human and yeast suggesting that at least some of the exons may code for individual, structurally, or functionally important domains of the enzyme. We also describe the promoter sequence of the human topoisomerase I gene and show that it is composed of distinct functional elements.  相似文献   

9.
IL-2, a cytokine produced by T cells, is a key regulator of immune responses and T cell homeostasis. Controlling the availability of IL-2 is consequently of significant import to the immune system. Like other cytokines, IL-2 is thought to function as a soluble agonist, transiently present when secreted in response to appropriate stimuli. In this study, we show that the most salient properties of IL-2, propagation and control of T cell responses, are mediated in vivo by bound and not free cytokine and specifically by heparan sulfate-bound IL-2. These findings necessitate a new look at how IL-2 regulates immune responses and support the notion that the microenvironment plays a determining role in modulating the character of immune responses.  相似文献   

10.
Abstract Type I DNA topoisomerase was purified from the lower eukaryote Lentinus edodes . Like the topoisomerase I from other eukaryotic cells, the L. edodes enzyme removed both positive and negative superhelical turns. The M r of the enzyme was determined to be 71,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). On gel filtration by Sephacryl S-200, the enzyme appeared to be an aggregate with a native M r of about 235 000 daltons. No energy cofactor was required and ATP did not affect the enzyme. Activity was enhanced about 10-fold by Mg2+ (10 mM) and about 8-fold by KCl (100 mM).  相似文献   

11.
T cell responses to self Ags and normal microbial flora are carefully regulated to prevent autoreactivity. Because IL-10-deficient mice develop colitis, and this response is triggered by luminal flora, we investigated whether IL-10 regulates the ability of microbial Ags to induce autoreactive T cells that could contribute to intestinal inflammation. T cells from wild-type mice were primed with staphylococcal enterotoxin B (SEB) in vitro, which induced an autoreactive proliferative response to syngeneic feeder cells. The cells were predominately CD3+ and CD4+. T cells from IL-10-deficient mice were constitutively autoreactive, and SEB priming enhanced this further. The autoreactive, proliferative response of T cells from wild-type mice was suppressed by IL-10 in the primary or secondary culture, and this effect was inhibited by neutralizing Abs to the IL-10R. To confirm that an autoreactive repertoire was expanded after SEB priming, we used CBA/J mice (Mls-1a) in which autoreactive T cells recognizing the endogenous viral superantigen are depleted (Vbeta6, 7, 8.1 TCR-bearing cells). However, SEB rescued these autoreactive T cell repertoires. Adding anti-MHC class II Ab blocked the autoreactive response. SEB-primed splenic or colonic T cells also induced apoptosis in syngeneic intestinal epithelial cells that was blocked significantly by IL-10. Thus, microbial Ags have the potential to abrogate self tolerance by stimulating autoreactive T cells that become cytolytic to target cells. IL-10 plays a protective role in maintaining self tolerance after microbial stimulation by preventing the activation of T cells that contribute to epithelial cell damage.  相似文献   

12.
13.
The site specificity of bacteriophage T4-induced type II DNA topoisomerase action on double-stranded DNA has been explored by studying the sites where DNA cleavages are induced by the enzyme. Oxolinic acid addition increases the frequency at which phi X174 duplex DNA is cut by the enzyme by about 100-fold, to the point where nearly every topoisomerase molecule causes a double-stranded DNA cleavage event. The effect of oxolinic acid on the enzyme is very similar to its effect on another type II DNA topoisomerase, the Escherichia coli DNA gyrase. A filter-binding method was developed that allows efficient purification of topoisomerase-cleaved DNA fragments by selecting for the covalent attachment of this DNA to the enzyme. Using this method, T4 topoisomerase recognition of mutant cytosine-containing T4 DNA was found to be relatively nonspecific, whereas quite specific recognition sites were observed on native T4 DNA, which contains glucosylated hydroxymethylcytosine residues. The increased specificity of native T4 DNA recognition seems to be due entirely to the glucose modification. In contrast, E. coli DNA gyrase shows a high level of specificity for both the mutant cytosine-containing DNA and native T4 DNA, recognizing about five strong cleavage sites on both substrates. An unexpected feature of DNA recognition by the T4 topoisomerase is that the addition of the cofactor ATP strongly stimulates the topoisomerase-induced cleavage of native T4 DNA, but has only a slight effect on cleavage of cytosine-containing T4 DNA.  相似文献   

14.
We investigated the involvement of IL-1 and IL-6 in activation of resting human T lymphocytes via the Ti-Ag receptor/CD3-dependent and the CD2-dependent pathways, respectively. When lymphocytes were triggered through CD3-Ti, neither IL-1 nor IL-6 nor the combination of both cytokines was capable of inducing a proliferative response, whereas addition of monocytes or IL-2 to such a system mediated DNA synthesis and cellular mitosis. In contrast, in the presence of submitogenic concentrations of mAb directed at CD2, IL-1 and/or IL-6 produced marked comitogenic dose-dependent effects. Moreover, although the action of IL-1 was clearly dependent on expression of the IL-2/IL-2R system, proliferation to CD2 antibody plus IL-6 could not be blocked by mAb directed at the IL-2R and/or IL-4. T cell responsiveness to both IL-1 and IL-6 was facilitated in the presence of CD58-like signals as delivered by human rCD58, SRBC or a mAb (anti-T111A), which binds to an interaction site for CD58 on the human CD2 molecule. These findings indicate that CD2 and its ligand CD58 play an important role in T cell/monocyte interactions during primary immune responses by means of upregulating T cell susceptibility to monocyte-derived cytokines.  相似文献   

15.
In the IL-2-dependent T cell clone CTLL-2, dexamethasone, a synthetic glucocorticoid, induces a suicide program characterized by the early degradation of chromatin in oligonucleosome-length fragments which precedes the loss of cell viability by 2 to 4 h. These effects are most likely mediated through the interaction with a specific glucocorticoid receptor as suggested by the structure-activity relationship of the various steroids tested. Incubation of nuclei of glucocorticoid-untreated cells in the presence of calcium and magnesium ions induces the cleavage of DNA in the linker region between nucleosomes, suggesting that fragmentation of chromatin in intact cells by glucocorticoids may involve the activation of a preexisting endonuclease. Interestingly, the presence of a saturating dose of IL-2 during the treatment of CTLL-2 cells with glucocorticoids completely blocks the cell death program.  相似文献   

16.
The induction by interleukin-2 of DNA topoisomerase I and DNA topoisomerase II activities in the human T cell line HuT 78 was investigated. HuT 78 cells were treated with 1000 U of interleukin-2/ml, and extracts of the HuT 78 nuclei were prepared over a 24 h period. The extracts were assayed quantitatively for the activities of DNA topoisomerase I and DNA topoisomerase II. Three concomitant, transient increases of 3- to 11-fold in the specific activities of both DNA topoisomerase I and DNA topoisomerase II were observed following treatment with IL-2 at 0.5, 4, and 10 h after treatment with interleukin-2. The specific activities of both enzymes returned to base-line values after each of these transient increases. These results reveal that the activities of DNA topoisomerase I and DNA topoisomerase II are highly regulated in HuT 78 cells upon treatment with IL-2.  相似文献   

17.
Type I DNA topoisomerase was partially purified from Bacillus stearothermophilus by ammonium sulfate precipitation and column chromatographies on phosphocellulose, DEAE-cellulose and heparin-agarose. On heparin-agarose chromatography, topoisomerase I activity was separated into three fractions (designated Fractions A, B, and C). Each fraction was further subjected to gel filtration on Sephacryl S-200. From electrophoretic analysis on polyacrylamide gel, Fraction A was found to contain two enzyme species having molecular weights of 110,000 and 100,000, and Fraction B one enzyme species with a molecular weight of 80,000. The molecular weight of the enzyme in Fraction C was estimated to be around 150,000 by gel filtration. The enzymes in Fractions A and B exhibited little activity in the presence of Mg2+, while the activity was increased remarkably by NaCl with Mg2+. No activity was observed in the presence of NaCl alone. The enzyme in Fraction C required only Mg2+ for full activity. With Fraction A, the topoisomerase I-induced cleavage sites on tetracycline-resistant plasmid pNS1 (2.55 megadaltons) were mapped. Fraction A cleaved the DNA at ten specific sites. These sites were compared to those of the Haemophilus gallinarum enzyme, which have already been mapped (Shishido et al. (1983) Biochem. Biophys. Acta 740, 108). The results showed that there is a remarkably coincidence between the cleavage sites induced by the B. stearothermophilus and H. gallinarum enzymes.  相似文献   

18.
We have derived a Ly-1+, 2-3- T cell clone that is specific for autologous I-A on activated but not on resting cells. After activation, this clone produces factors that induce purified (B + adherent) cells to secrete antibody in response to sheep red blood cells and type 2 T-independent antigens. Regulation of plaque-forming cell responses by this clone is dose dependent: low numbers enhance the plaque-forming cell response, whereas high numbers suppress the response. The inhibition observed with high doses is associated with cytolysis of I-A+ cells, and this can be blocked by the addition of anti-I-A antibodies. The physiologic significance of this novel cell type in regulating immune responses is discussed.  相似文献   

19.
Cytokines play an important role in modulating the development and function of dendritic cells (DCs). Type I IFNs activate DCs and drive anti-viral responses, whereas IL-4 is the prototype of a Th2 cytokine. Evidence suggests that type I IFNs and IL-4 influence each other to modulate DC functions. We found that two type I IFNs, IFN-alpha and IFN-beta, stimulated a similar costimulatory profile in myeloid resting DCs. IL-4 suppressed the response of myeloid DCs to both type I IFNs in vitro and in vivo by impairing the up-regulation of MHC and costimulatory molecules and the production of cytokines, such as IL-6 and IL-15, and anti-viral genes, such as Mx-1, upon type I IFN stimulation. In dissecting the mechanism underlying this inhibition, we characterized the positive feedback loop that is triggered by IFN-alpha in primary DCs and found that IL-4 inhibited the initial phosphorylation of STAT1 and STAT2 (the transducers of signaling downstream of IFN-alpha and -beta receptors (IFNARs)) and reduced the up-regulation of genes involved in the amplification of the IFN response such as IRF-7, STAT1, STAT2, IFN-beta, and the IFNARs in vitro and in vivo. Therefore, IL-4 renders myeloid DCs less responsive to paracrine type I IFNs and less potent in sustaining the autocrine positive loop that normally amplifies the effects of type I IFNs. This inhibition could explain the increased susceptibility to viral infections observed during Th2-inducing parasitoses.  相似文献   

20.
A new topoisomerase capable of relaxing negatively supercoiled DNA in Escherichia coli has been identified during chromatography on novobiocin-Sepharose. A simple and reproducible purification procedure is described to obtain this enzyme, called topoisomerase III (topo III), in a homogeneous form. The protein is a single polypeptide with a molecular weight of 74 000 +/- 2000 and is a type I topoisomerase, changing the linking number of DNA circles in steps of one. It is present in deletion strains lacking the topA gene and further differs from the well-studied topoisomerase I (omega protein; Eco topo I) in (1) its requirement for K+ in addition to Mg2+ to exhibit optimal activity and (2) its affinity to novobiocin-Sepharose. Positively supercoiled DNA is not relaxed during exposure to the enzyme. Topo III has no ATPase activity, and ATP does not show any discernible effect on the reduction of superhelical turns. The purified topoisomerase has no supercoiling activity and is unaffected by high concentrations of oxolinic acid and novobiocin in the relaxing reaction. Single-stranded DNA and spermidine strongly inhibit the topoisomerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号