首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS) to repair DNA double strand breaks (DSBs) through the nonhomologous end joining (NHEJ) pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70-/- cells and ku80-/- cells also appeared to have a defect in base excision repair (BER). BER corrects base lesions, apurinic/apyrimidinic (AP) sites and single stand breaks (SSBs) utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1) and DNA Polymerase β (Pol β). In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80) and/or free Ku80 (not bound to Ku70) possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80-/- mice had a shorter life span than dna-pkcs-/- mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol β. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT), an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER.  相似文献   

2.
Ku80 is important in the repair of DNA double-strand breaks by its essential function in non-homologous end-joining. The absence of Ku80 causes the accumulation of DNA damage and leads to premature ageing in mice. We showed that mouse embryonic fibroblasts (MEFs) from ku80−/− mice senesced rapidly with elevated levels of p53 and p21. Deletion of p21 delayed the early senescence phenotype in ku80−/− MEFs, despite an otherwise intact response of p53. In contrast to ku80−/−p53−/− mice, which die rapidly primarily from lymphomas, there was no significant increase in tumorigenesis in ku80−/−p21−/− mice. However, ku80−/−p21−/− mice showed no improvement with respect to rough fur coat or osteopaenia, and even showed a shortened lifespan compared with ku80−/− mice. These results show that the increased lifespan of ku80−/− MEFs owing to the loss of p21 is not associated with an improvement of the premature ageing phenotypes of ku80−/− mice observed at the organismal level.  相似文献   

3.
Ku80 is often referred to as a tumor suppressor since it maintains the genome by repairing DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. Even though Ku80 deletion causes hypersensitivity to γ-radiation, DNA damage and chromosomal rearrangements, Ku80-mutant mice exhibit very low cancer levels. We previously hypothesized these low cancer levels were caused by enhanced cell cycle checkpoints that responded to inefficiently repaired DNA damage because Ku80-mutant fibroblasts exhibit premature cellular senescence that was dependent on a p53-mediated DNA damage response. In addition, Ku80 and p53 show a genetic interaction to suppress pro-B cell lymphoma and medulloblastoma. Here we tested for a similar anti-tumor genetic interaction between Ku80 and the cyclin kinase inhibitor, p27Kip1 (p27) since p27 mutant mice showed elevated levels of pituitary adenoma that were exacerbated by γ-radiation-induced DNA damage (damage repaired by Ku80). We found that deleting both Ku80 and p27 did not exacerbate cancer as compared to either single mutant. In addition, fibroblasts deleted for both exhibited premature cellular senescence similar to Ku80-mutant fibroblasts. Thus, p27 did not exhibit an obvious genetic interaction with Ku80 to suppress tumors. This observation suggests that DNA damage (or DNA damage responses) induced by either γ-radiation or Ku80 deletion are not equivalent since γ-radiation exacerbates oncogenesis in mice deleted for either p53 or p27 while Ku80 deletion exacerbates oncogenesis for only the former genotype.  相似文献   

4.
Loss of telomere equilibrium and associated chromosome-genomic instability might effectively promote tumour progression. Telomere function may have contrasting roles: inducing replicative senescence and promoting tumourigenesis and these roles may vary between cell types depending on the expression of the enzyme telomerase, the level of mutations induced, and efficiency/deficiency of related DNA repair pathways. We have identified an alternative telomere maintenance mechanism in mouse embryonic stem cells lacking telomerase RNA unit (mTER) with amplification of non-telomeric sequences adjacent to existing short stretches of telomere repeats. Our quest for identifying telomerase-independent or alternative mechanisms involved in telomere maintenance in mammalian cells has implicated the involvement of potential DNA repair factors in such pathways. We have reported earlier on the telomere equilibrium in scid mouse cells which suggested a potential role of DNA repair proteins in telomere maintenance in mammalian cells. Subsequently, studies by us and others have shown the association between the DNA repair factors and telomere function. Mice deficient in a DNA-break sensing molecule, PARP-1 (poly [ADP]-ribopolymerase), have increased levels of chromosomal instability associated with extensive telomere shortening. Ku80 null cells showed a telomere shortening associated with extensive chromosome end fusions, whereas Ku80+/- cells exhibited an intermediate level of telomere shortening. Inactivation of PARP-1 in p53-/- cells resulted in dysfunctional telomeres and severe chromosome instability leading to advanced onset and increased tumour incidence in mice. Interestingly, haploinsufficiency of PARP-1 in Ku80 null cells causes more severe telomere shortening and chromosome abnormalities compared to either PARP-1 or Ku80 single null cells and Ku80+/-PARP-/- mice develop spontaneous tumours. This overview will focus mainly on the role of DNA repair/recombination and DNA damage signalling molecules such as PARP-1, DNA-PKcs, Ku70/80, XRCC4 and ATM which we have been studying for the last few years. Because the maintenance of telomere function is crucial for genomic stability, our results will provide new insights into the mechanisms of chromosome instability and tumour formation.  相似文献   

5.
6.
Ku80 and DNA-PKCS are both involved in the repair of double strand DNA breaks via the nonhomologous end joining (NHEJ) pathway. While ku80−/− mice exhibit a severely reduced lifespan and size, this phenotype is less pronounced in dna-pkcs−/− mice. However, these observations are based on independent studies with varying genetic backgrounds. Here, we generated ku80−/−, dna-pkcs−/− and double knock out mice in a C57Bl6/J*FVB F1 hybrid background and compared their lifespan, end of life pathology and mutation frequency in liver and spleen using a lacZ reporter. Our data confirm that inactivation of Ku80 and DNA-PKCS causes reduced lifespan and bodyweights, which is most severe in ku80−/− mice. All mutant mice exhibited a strong increase in lymphoma incidence as well as other aging-related pathology (skin epidermal and adnexal atrophy, trabacular bone reduction, kidney tubular anisokaryosis, and cortical and medullar atrophy) and severe lymphoid depletion. LacZ mutation frequency analysis did not show strong differences in mutation frequencies between knock out and wild type mice. The ku80−/− mice had the most severe phenotype and the Ku80-mutation was dominant over the DNA-PKCS-mutation. Presumably, the more severe degenerative effect of Ku80 inactivation on lifespan compared to DNA-PKCS inactivation is caused by additional functions of Ku80 or activity of free Ku70 since both Ku80 and DNA-PKCS are essential for NHEJ.  相似文献   

7.
ING2 is a candidate tumor suppressor gene that can activate p53 by enhancing its acetylation. Here, we demonstrate that ING2 is also involved in p53-mediated replicative senescence. ING2 protein expression increased in late-passage human primary cells, and it colocalizes with serine 15-phosphorylated p53. ING2 and p53 also complexed with the histone acetyltransferase p300. ING2 enhanced the interaction between p53 and p300 and acted as a cofactor for p300-mediated p53 acetylation. The level of ING2 expression directly modulated the onset of replicative senescence. While overexpression of ING2 induced senescence in young fibroblasts in a p53-dependent manner, expression of ING2 small interfering RNA delayed the onset of senescence. Hence, ING2 can act as a cofactor of p300 for p53 acetylation and thereby plays a positive regulatory role during p53-mediated replicative senescence.  相似文献   

8.
Non-homologous end joining (NHEJ) is thought to be an important mechanism for preventing the adverse effects of DNA double strand breaks (DSBs) and its absence has been associated with premature aging. To investigate the effect of inactivated NHEJ on spontaneous mutation frequencies and spectra in vivo and in cultured cells, we crossed a Ku80-deficient mouse with mice harboring a lacZ-plasmid-based mutation reporter. We analyzed various organs and tissues, as well as cultured embryonic fibroblasts, for mutations at the lacZ locus. When comparing mutant with wild-type mice, we observed a significantly higher number of genome rearrangements in liver and spleen and a significantly lower number of point mutations in liver and brain. The reduced point mutation frequency was not due to a decrease in small deletion mutations thought to be a hallmark of NHEJ, but could be a consequence of increased cellular responses to unrepaired DSBs. Indeed, we found a substantial increase in persistent 53BP1 and gammaH2AX DNA damage foci in Ku80-/- as compared to wild-type liver. Treatment of cultured Ku80-deficient or wild-type embryonic fibroblasts, either proliferating or quiescent, with hydrogen peroxide or bleomycin showed no differences in the number or type of induced genome rearrangements. However, after such treatment, Ku80-deficient cells did show an increased number of persistent DNA damage foci. These results indicate that Ku80-dependent repair of DNA damage is predominantly error-free with the effect of alternative more error-prone pathways creating genome rearrangements only detectable after extended periods of time, i.e., in young adult animals. The observed premature aging likely results from a combination of increased cellular senescence and an increased load of stable, genome rearrangements.  相似文献   

9.
10.
Following a proliferative phase of variable duration, most normal somatic cells enter a growth arrest state known as replicative senescence. In addition to telomere shortening, a variety of environmental insults and signaling imbalances can elicit phenotypes closely resembling senescence. We used p53(-/-) and p21(-/-) human fibroblast cell strains constructed by gene targeting to investigate the involvement of the Arf-Mdm2-p53-p21 pathway in natural as well as premature senescence states. We propose that in cell types that upregulate p21 during replicative exhaustion, such as normal human fibroblasts, p53, p21, and Rb act sequentially and constitute the major pathway for establishing growth arrest and that the telomere-initiated signal enters this pathway at the level of p53. Our results also revealed a number of significant differences between human and rodent fibroblasts in the regulation of senescence pathways.  相似文献   

11.
Chronic low‐dose ionizing radiation induces cardiovascular disease in human populations but the mechanism is largely unknown. We suggested that chronic radiation exposure may induce endothelial cell senescence that is associated with vascular damage in vivo. We investigated whether chronic radiation exposure is causing a change in the onset of senescence in endothelial cells in vitro. Indeed, when exposed to continuous low‐dose rate gamma radiation (4.1 mGy/h), primary human umbilical vein endothelial cells (HUVECs) initiated senescence much earlier than the nonirradiated control cells. We investigated the changes in the protein expression of HUVECs before and during the onset of radiation‐induced senescence. Cellular proteins were quantified using isotope‐coded protein label technology after 1, 3, and 6 weeks of radiation exposure. Several senescence‐related biological pathways were influenced by radiation, including cytoskeletal organization, cell–cell communication and adhesion, and inflammation. Immunoblot analysis showed an activation of the p53/p21 pathway corresponding to the progressing senescence. Our data suggest that chronic radiation‐induced DNA damage and oxidative stress result in induction of p53/p21 pathway that inhibits the replicative potential of HUVECs and leads to premature senescence. This study contributes to the understanding of the increased risk of cardiovascular diseases seen in populations exposed to chronic low‐dose irradiation.  相似文献   

12.
The cyclin-dependent kinase (CDK) inhibitor p21 plays key roles in p53-dependent DNA-damage responses, i.e., cell cycle checkpoints, senescence, or apoptosis. p21 might also play a role in DNA repair. p21 foci arise at heavy-ion-irradiated DNA-double-strand break (DSB) sites, which are mainly repaired by nonhomologous DNA-end-joining (NHEJ). However, no mechanisms of p21 accumulation at double-strand break (DSB) sites have been clarified in detail. Recent works indicate that Ku70 and Ku80 are essential for the accumulation of other NHEJ core factors, e.g., DNA-PKcs, XRCC4 and XLF, and other DNA damage response factors, e.g., BRCA1. Here, we show that p21 foci arise at laser-irradiated sites in cells from various tissues from various species. The accumulation of EGFP-p21 was detected in not only normal cells, but also transformed or cancer cells. Our results also showed that EGFP-p21 accumulated rapidly at irradiated sites, and colocalized with the DSB marker γ-H2AX and with the DSB sensor protein Ku80. On the other hand, the accumulation occurred in Ku70-, Ku80-, or DNA-PKcs-deficient cell lines and in human papillomavirus 18-positive cells, whereas the p21 mutant without the PCNA-binding region (EGFP-p21(1–146)) failed to accumulate at the irradiated sites. These findings suggest that the accumulation of p21, but not functional p53 and the NHEJ core factors, is dependent on PCNA. These findings also suggest that the accumulation activity of p21 at DNA damaged sites is conserved among human and animal cells, and p21 is a useful tool as a detection marker of DNA damaged sites.  相似文献   

13.
Nek6 is an NIMA-related kinase that plays a critical role in mitotic cell cycle progression. Recent studies have shown that Nek6 is upregulated in various human cancers, but the function of Nek6 in tumorigenesis is largely unknown. Here, we examined the role of Nek6 in cellular senescence. Our data revealed that Nek6 expression is decreased both in both the replicative senescence of human normal fibroblasts and premature senescence induced by p53 expression in EJ human bladder cancer cells and H1299 human lung cancer cells. Interestingly, the enforced expression of Nek6 in EJ and H1299 cells completely suppresses p53-induced senescence, whereas the expression of kinase-dead Nek6 did not affect p53-induced senescence. Mechanistic studies revealed that cell cycle arrest in the G1 and G2/M phases, as well as the reduction of cyclin B and cdc2 protein level upon p53 expression were significantly reduced by Nek6 overexpression. In addition, p53-induced increases in intracellular levels of ROS were also inhibited in cells overexpressing Nek6. These results suggest that the downregulation of Nek6 expression is required for the onset of p53-induced cellular senescence and imply a possible role of Nek6 in tumorigenesis.  相似文献   

14.
We show here that histone deacetylase inhibitors (HDACIs) sodium dibutyrate (SDB) and trichostatin A (TSA) induce a phenotype that has similarities to replicative senescence in human fibroblasts. There was no evidence that SDB accelerated a constitutive cell division counting mechanism as previously suggested because cells pretreated with SDB for three mean population doublings (MPDs) exhibited a similar overall proliferative life span to controls once SDB was withdrawn. SDB-treated cells upregulated the cell cycle inhibitors p21(WAF1) and p16(INK4A), but not p14(ARF), in the same sequential order as in senescence and the cells developed biochemical markers of senescence. However, the mechanism of senescence did not involve telomere dysfunction and there was no evidence for any posttranslational modification of p53. The expression of human papillomavirus (HPV) 16 E6 in human fibroblasts or targeted disruption of the p53 and p21(WAF) genes only weakly antagonized HDACI-induced senescence. However, expression of the E7 gene, which inhibits the function of pRb, cooperated with E6 to block SDB-induced senescence completely and human cells deficient in p16(INK4A) (but not p14(ARF)) were also resistant to SDB-induced senescence, suggesting that the p16(INK4A)/pRb pathway is the major mediator of HDACI-induced senescence in human cells. However, p53-/- mouse fibroblasts were resistant to HDACI-induced senescence, identifying p53 as the major pathway to senescence in this species.  相似文献   

15.
p53 limits the proliferation of primary diploid fibroblasts by inducing a state of growth arrest named replicative senescence - a process which protects against oncogenic transformation and requires integrity of the p53 tumour suppressor pathway. However, little is known about the downstream target genes of p53 in this growth-limiting response. Here, we report that suppression of the p53 target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference (RNAi) leads to escape from replicative senescence both in primary mouse embryo fibroblasts and primary human BJ fibroblasts. PAI-1 knockdown results in sustained activation of the PI(3)K-PKB-GSK3beta pathway and nuclear retention of cyclin D1, consistent with a role for PAI-1 in regulating growth factor signalling. In agreement with this, we find that the PI(3)K-PKB-GSK3beta-cyclin D1 pathway is also causally involved in cellular senescence. Conversely, ectopic expression of PAI-1 in proliferating p53-deficient murine or human fibroblasts induces a phenotype displaying all the hallmarks of replicative senescence. Our data indicate that PAI-1 is not merely a marker of senescence, but is both necessary and sufficient for the induction of replicative senescence downstream of p53.  相似文献   

16.
We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) down-regulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the α subunit of CK2 (CK2α) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the CK2α 3′-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for CK2α downregulation. The four miRNAs increased senescence-associated β-galactosidase (SA-β-gal) staining, p53 and p21Cip1/WAF1 expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. CK2α over-expression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through CK2α downregulation-dependent ROS generation.  相似文献   

17.
18.
Cellular senescence limits the replicative capacity of normal cells and acts as an intrinsic barrier that protects against the development of cancer. Telomere shortening–induced replicative senescence is dependent on the ATM‐p53‐p21 pathway but additional genes likely contribute to senescence. Here, we show that the p53‐responsive gene BTG2 plays an essential role in replicative senescence. Similar to p53 and p21 depletion, BTG2 depletion in human fibroblasts leads to an extension of cellular lifespan, and ectopic BTG2 induces senescence independently of p53. The anti‐proliferative function of BTG2 during senescence involves its stabilization in response to telomere dysfunction followed by serum‐dependent binding and relocalization of the cell cycle regulator prolyl isomerase Pin1. Pin1 inhibition leads to senescence in late‐passage cells, and ectopic Pin1 expression rescues cells from BTG2‐induced senescence. The neutralization of Pin1 by BTG2 provides a critical mechanism to maintain senescent arrest in the presence of mitogenic signals in normal primary fibroblasts.  相似文献   

19.
Resistance of primary cells to transformation by oncogenic Ras has been attributed to the induction of replicative growth arrest. This irreversible 'fail-safe mechanism' resembles senescence and requires induction by Ras of p19ARF and p53 (refs 3-5). Mutation of either p19ARF or p53 alleviates Ras-induced senescence and facilitates oncogenic transformation by Ras. Here we report that, whereas Rb and p107 are each dispensable for Ras-induced replicative arrest, simultaneous ablation of both genes disrupts Ras-induced senescence and results in unrestrained proliferation. This occurs despite activation by Ras of the p19ARF /p53 pathway, identifying pRb and p107 as essential mediators of Ras-induced antiproliferative p19ARF/p53 signalling. Unexpectedly, in contrast to p19ARF or p53 deficiency, loss of Rb/p107 function does not result in oncogenic transformation by Ras, as Ras-expressing Rb-/-/p107-/- fibroblasts fail to grow anchorage-independently in vitro and are not tumorigenic in vivo. These results demonstrate that in the absence of both Rb and p107 cells are resistant to p19ARF/p53-dependent protection against Ras-induced proliferation, and uncouple escape from Ras-induced premature senescence from oncogenic transformation.  相似文献   

20.
Numerous studies have shown that supplementation of the growth medium of human fibroblasts with dexamethasone at physiologic concentrations extends replicative lifespan up to 30%. While this extension of lifespan has been used to probe various aspects of the senescent phenotype, no mechanism for the increased lifespan of human fibroblasts grown in the presence of dexamethasone has ever been identified. In the present study we present evidence that the extended lifespan of human lung fibroblasts (WI-38 cells) that occurs when these cells are maintained in culture medium supplemented with dexamethasone is accompanied by a suppression of p21(Waf1/Cip1/Sdi1) levels, which normally increase as these cells enter senescence, while p16(INK4a) levels are unaffected. These results suggest that the delay of senescence in cultures grown in the presence of dexamethasone is due to a suppression of the senescence related increase in p21(Waf1/Cip1/Sdi1). These results are consistent with models of replicative senescence in which p53 and p21(Waf1/Cip1/Sdi1) play a role in the establishment of the senescent arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号