首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A fast regenerating Agrobacterium tumefaciens-mediated transformation protocol for Bacopa monnieri (L.) Wettst. was developed as a model system for heterologous expression of terpenoid indole alkaloid pathway genes from Catharanthus roseus (L.) G. Don. The direct regeneration of shoots from leaf explants co-cultured with A. tumefaciens resulted in the integration of a tryptophan decarboxylase (tdc) and strictosidine synthase (str) cassette (<hpt-<Tdc2-<Str-gus>) in the regenerated progeny. The highest transformation efficiency (83.88%) was achieved when leaf explants were infected on the adaxial laminar surface by manual pricking with 48- to 72-h-old suspensions (OD600 = 0.5–0.6) of A. tumefaciens strain LBA1119 (carrying the binary vector pMOG22). The heterologous expression of tryptophan decarboxylase and strictosidine synthase genes that are otherwise not present in B. monnieri plants was confirmed through semi-quantitative PCR and metabolite quantification assays. The entire protocol duration from co-cultivation through regeneration of transgenic plants to their establishment in the glass house took 40–45 d. The developed B. monnieri model can be used to test expression cassettes carrying genes for plant secondary metabolic pathway engineering, especially those genes that are expressed in differentiated cell, tissue, or organs.  相似文献   

4.
5.
Hydrilla verticillata (L.f.) Royle is widely distributed and protects the water environment mainly by serving as a potential heavy metal hyperaccumulator. Hydroponic experiments were performed to investigate the biochemical responses of the leaves and stems of H. verticillata at pH values of 5.5, 6.5, 7.5, 8.5, and 9.5 for 7, 14, and 21 days. The results showed that a weak alkaline environment (pH 8.5) promoted plant growth and that an acidic environment (pH 5.5, 6.5) adversely affected normal metabolism. The malondialdehyde content and three antioxidant enzyme activities changed in a similar pattern after the pH treatments: varying increases occurred following all pH treatments with the exception of pH 8.5. The activities of the three N metabolism enzymes briefly increased in an acidic environment and then sharply decreased compared to the control. The ROS-scavenging mechanisms and N metabolism mechanisms in H. verticillata worked together to respond to pH-induced effects. Based on the interplay between antioxidant enzymes and N metabolism enzymes, H. verticillata could defend against the toxicity induced by an acidic environment for approximately seven days and demonstrate stronger adaptability to the alkaline environment. Depending on the growth status and the synergistic effects of the enzymes, an optimum pH of 8.5 for H. verticillata was found in our experiment. Thus, these characteristics reveal a better understanding of this species so that it can be effectively controlled and better referenced for phytoremediation.  相似文献   

6.
7.

Objectives

To clone and express a diacylglycerol acyltransferase (DGAT) gene from Mortierella alpina in Saccharomyces cerevisiae and characterize oil production and fatty acid composition of the resulting recombinant

Results

A new, full-length cDNA, putatively encoding a DGAT, was cloned from M. alpina. We subsequently cloned the gene, except the transmembrane-encoding region, termed MaDGAT, its molecular mass was 31.3 kDa. MaDGAT shares 75% identity with a DGAT from Mortierella verticillata NRRL 6337. A recombinant vector expressing MaDGAT, pYES2-DGAT, was constructed and transformed into S. cerevisiae H1246, a neutral, lipid-deficient quadruple mutant. TLC analysis showed that the recombinant vector restored triacylglycerol biosynthesis and its content in the recombinant strain was 3.9%.

Conclusion

MaDGAT is a novel DGAT gene and could increase TAG biosynthesis in M. alpina or other filamentous fungi, thereby promoting the synthesis of polyunsaturated fatty acids.
  相似文献   

8.
Previous studies showed that geraniol could be an upstream limiting factor in the monoterpenoid pathway towards the production of terpenoid indole alkaloid (TIA) in Catharanthus roseus cells and hairy root cultures. This shortage in precursor availability could be due to (1) limited expression of the plastidial geraniol synthase resulted in a low activity of the enzyme to catalyze the conversion of geranyl diphosphate to geraniol; or (2) the limitation of geraniol transport from plastids to cytosol. Therefore, in this study, C. roseus’s geraniol synthase (CrGES) gene was overexpressed in either plastids or cytosol of a non-TIA producing C. roseus cell line. The expression of CrGES in the plastids or cytosol was confirmed and the constitutive transformation lines were successfully established. A targeted metabolite analysis using HPLC shows that the transformed cell lines did not produce TIA or iridoid precursors unless elicited with jasmonic acid, as their parent cell line. This indicates a requirement for expression of additional, inducible pathway genes to reach production of TIA in this cell line. Interestingly, further analysis using NMR-based metabolomics reveals that the overexpression of CrGES impacts primary metabolism differently if expressed in the plastids or cytosol. The levels of valine, leucine, and some metabolites derived from the shikimate pathway, i.e. phenylalanine and tyrosine were significantly higher in the plastidial- but lower in the cytosolic-CrGES overexpressing cell lines. This result shows that overexpression of CrGES in the plastids or cytosol caused alteration of primary metabolism that associated to the plant cell growth and development. A comprehensive omics analysis is necessary to reveal the full effect of metabolic engineering.  相似文献   

9.
The Upper River Paraná Floodplain System comprises the rivers Ivinheima, Baía and Paraná, which with their associated waterbodies form three subsystems, each showing individual characteristics. Hydrilla verticillata recently invaded the Upper Paraná Floodplain, while Egeria najas is the native most abundant submersed macrophyte. A large flood-pulse, during January–March 2007, abruptly reduced macrophyte stands in many areas to near-zero and dispersed propagules over the entire floodplain. From April 2007 to April 2008, we conducted three surveys sampling for the presence–absence of H. verticillata and E. najas and environmental variables aiming to answer: (1) How rapid is the colonization–regeneration process for both species? (2) Which habitats seem to be more susceptible to their colonization? (3) Which environmental factors can best predict their occurrence? Neither H. verticillata nor E. najas colonized the Ivinheima subsystem. In the Baía subsystem, E. najas had only two occurrences while H. verticillata was not present. In the Paraná subsystem, E. najas predominantly occurred in river channels, but it was also common in floodplain lakes. In April 2007, it was found in 13% of the sites in the Paraná subsystem, increasing to 30% in November 2007 and reaching 34% in April 2008. H. verticillata did not successfully colonize floodplain lakes of the Paraná subsystem. In channels, it had 34% occurrence in April 2007, increasing to 62% in November 2007 and remaining at 62% in April 2008. The role of environmental variables in predicting species occurrence changed depending upon the scale of the analysis. Considering the whole Upper Paraná floodplain, water transparency followed by electrical conductivity were the strongest predictors for both species. Colonization by submersed plants seems improbable in the Ivinheima subsystem owing to its low water transparency besides frequent localized floods; in the Baía subsystem, it seems inhibited by transparency and low alkalinity. Considering just the Paraná subsystem, the proportion of organic matter in sediment, ten times higher in floodplain lakes than in channels, was the best predictor for H. verticillata occurrence (also related to water pH and transparency), while E. najas was only significantly explained by transparency.  相似文献   

10.
The transgenic S1 cell line of Catharanthus roseus (L.) G. Don has been used to study possible rate limiting steps in the terpenoid indole alkaloid (TIA) biosynthesis. Line S1 carries a recombinant, over-expressed version of the endogenous Str gene which encodes strictosidine synthase (STR; EC 4.3.3.2). STR catalyzes the stereospecific condensation of tryptamine and secologanin to strictosidine. Various concentrations and combinations of biosynthetic indole precursors L-tryptophan, tryptamine, and iridoid precursors loganin and secologanin were added to the cell suspension cultures of line S1. The largest TIA accumulation occurred when the precursor was supplied at the time of inoculation of the cells into the production medium. Line S1 could supply tryptamine endogenously up to 0.8 mM loganin feeding. The enhancement of the accumulation of TIAs by addition of loganin indicates a limitation in the terpenoid pathway. Supplying tryptamine or tryptophan along with the iridoid precursors resulted in even further increase of alkaloid accumulation. Under optimal conditions, cultures of line S1 accumulated about 600 mol l–1 of TIAs. Also, the conversion of strictosidine into other TIAs further down the pathway seems to be a limiting step. Considering the mass balance of the intermediates fed and TIAs recovered, several yet unknown pathways must be involved in channeling away intermediates from the TIA pathway and in the breakdown of the TIAs. Our results suggest that high rates of tryptamine synthesis can still take place under conditions of low TDC activity and the flux towards tryptamine is induced by loganin feeding. However, accumulation of tryptamine seems to reduce the flux through feedback inhibition.  相似文献   

11.
12.
The occurrence of non-native species at high densities may generate competition for resources and possibly exclude native species in various environments. We evaluated the effects of increased densities of the non-native invasive macrophyte Hydrilla verticillata on the growth of the native species Egeria najas in different sediment types and with only root interactions or root?+?shoot interactions. We tested the hypothesis that the effect of the invasive on the native species is density dependent and that it is greater when competition for light and nutrients occurs (root?+?shoot interactions). The results of these experiments demonstrated that increased density of the invasive species H. verticillata significantly decreased the growth of the native species independent of sediment type (sand or mud sediments). When plants competed for water and sediment resources (root?+?shoot interactions), the native species was more impacted by the invasive than when they competed only for water resources (only shoots interacting). Our results show that E. najas is probably unable to colonize sites highly colonized by hydrilla, and this applies to both sand and mud sediments. This outcome suggests that H. verticillata is a threat for E. najas and likely other native submerged species in South America.  相似文献   

13.
Uridine diphosphate glucose dehydrogenase (UGDH) plays an important role in biosynthesis of hemicellulose by catalyzing oxidation of UDP-glucose (UDP-Glc) to UDP-glucuronate (UDP-GlcA), a key sugar nucleotide involved in biosynthesis of the plant cell wall. In this study, a UGDH ortholog referred to as LgUGDH was isolated from Larix gmelinii using PCR and rapid amplification of cDNA ends techniques. Real-time PCR shows that the LgUGDH gene was expressed primarily in larch stems in addition to its roots and leaves, and Southern blot analysis indicates that UGDH is encoded by two paralogous genes in L. gmelinii. Overexpression of LgUGDH increased the content of soluble sugars and hemicelluloses and enhanced vegetative growth and cold tolerance in transgenic Arabidopsis thaliana. These results reveal that L. gmelinii UGDH participates in sucrose/polysaccharide metabolism and cell wall biosynthesis and may be a good candidate gene for enhancing plant growth, cold tolerance, and hemicellulose content.  相似文献   

14.
Camptotheca acuminata is a Chinese tree that produces the anti-cancer monoterpenoid indole alkaloid camptothecin (CPT). 3-Hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) catalyzes the condensation of acetyl CoA and acetoacetyl CoA to form 3-hydroxy-3-methylglutaryl-CoA as an early step in the CPT biosynthetic pathway. A full-length cDNA encoding HMGS (designated as CaHMGS, GenBank accession no. EU677841) was successfully isolated from young leaves of C. acuminata by rapid amplification of cDNA ends (RACE). The full-length cDNA of CaHMGS was 1801 bp long and contained a 1413-bp open reading frame encoding a polypeptide of 471 amino acids. Comparative and bioinformatic analyses revealed that CaHMGS showed extensive homology with HMGSs from other plant species. Southern hybridization analysis showed that there were at least two HMGS gene members in the C. acuminata genome. CPT content was found to be much higher in cotyledons and hypocotyls as compared to roots. RT-PCR analysis revealed strong expression in hypocotyls and cotyledons, but no expression in roots, indicating good correlation between CaHMGS expression and CPT content in the tested tissues. The expression of CaHMGS could be regulated by exogenous elicitors, including salicylic acid and methyl jasmonate, suggesting that CaHMGS was elicitor-responsive. This work is a first step to acquire a better understanding on the role of HMGS in CPT biosynthesis.  相似文献   

15.
16.

Key message

VcFLS from Vaccinium corymbosum promoted myricetin biosynthesis in Arabidopsis thaliana and VcFLS expression was induced by salicylic acid.

Abstract

Flavonoids are polyphenols with important functions in pigmentation, UV filtration, and symbiotic nitrogen fixation. Flavonols are a class of flavonoids that are produced by the desaturation of dihydroflavanols in a reaction that is catalyzed by flavonol synthase (FLS). In the study reported here, we cloned the full-length cDNA of FLS (designated as VcFLS) from Vaccinium corymbosum (blueberry) using rapid amplification of cDNA ends (RACE). The cDNA contained a 1005-bp open reading frame that encoded a 334-amino acid protein. Phylogenetic analysis showed that VcFLS was closely related to FaFLS, a flavonol synthase that catalyzed the formation of kaempferol and had little effect on the formation of quercetin. Quantitative RT-PCR analysis demonstrated that VcFLS was expressed in all of the tissues tested, with particularly high expression in the petals and young leaves (both green and red). The flavanols myricetin and quercetin also occurred in all of these tested tissues, with the highest levels detected in mature leaves. The expression of VcFLS was not consistent with the accumulation of quercetin and myricetin in different tissues, nor were the expressions of VcFLS, VcPAL, VcCHS, VcF3H, and VcF3′5′H consistent with the accumulation of the quercetin during fruit development. However, the change in the trend of VcCHS and VcF3H expression was similar with myricetin accumulation during fruit development. Expression profiling analysis revealed that VcFLS expression was induced by salicylic acid, a phytohormone involved in plant defense against pathogens, and was suppressed by gibberellic acid, a phytohormone involved in various aspects of plant development. Heterologous expression of VcFLS in Arabidopsis thaliana increased the content of myricetin, but did not affect quercetin content. Thus, we conclude that VcFLS is a key enzyme in the flavonol biosynthetic pathway and would appear to be involved in the plant defense response.
  相似文献   

17.
A comparative study of the informativeness of SNP and STR markers for interspecific and intraspecific differentiation of the two species of the genus Ovis, snow sheep (O. nivicola) and domestic sheep (O. aries), was conducted. Eleven STR loci combined into two multiplex panels were examined. SNP analysis was performed with the DNA microarray OvineSNP50K BeadChip featuring 54241 SNPs. The possibility of clear differentiation of the studied Ovis species with both types of genetic markers was demonstrated. The advantages of SNP markers for intraspecific differentiation of the O. aries breeds and O. nivicola geographical groups were revealed. The areas of application of the studied types of DNA markers are discussed.  相似文献   

18.
A propamocarb-responsive gene named CsABC19 was isolated from a cucumber cultivar ‘D0351’ using a homologous cloning strategy. The full-length cDNA of CsABC19 was 921 bp with a complete ORF encoding 306 amino acids. Quantitative real-time PCR analysis revealed that CsABC19 was induced in the root, stem, leaf, and fruit by propamocarb and the expression levels of CsABC19 seemed to be different in different tissues. Further functional analysis showed that CsABC19 transgenic Arabidopsis plants appeared better growth performance under propamocarb stress and lower propamocarb residues. Our findings suggest that CsABC19 plays a crucial role in plant responses to propamocarb stress and also provide new clues for the mechanism regulation of the responses to propamocarb stress in cucumber.  相似文献   

19.
20.
The gene expression profile chip of salt-resistant wheat mutant RH8706-49 under salt stress was investigated. The overall length of the cDNA sequence of the probe was obtained using electronic cloning and RT-PCR. An unknown gene induced by salt was obtained, cloned, and named TaDi19 (Triticum aestivum drought-induced protein). No related report or research on the protein is available. qPCR analysis showed that gene expression was induced by many stresses, such as salt. Arabidopsis thaliana was genetically transferred using the overexpressing gene, which increased its salt tolerance. After salt stress, the transgenic plant demonstrated better physiological indicators (higher Ca2+ and lower Na+) than those of the wild-type plant. Results of non-invasive micro-test technology indicate that TaDi19-overexpressing A. thaliana significantly effluxed Na+ after salt treatment, whereas the wild-type plant influxed Na+. Chelating extracellular Ca2+ resulted in insignificant differences in salt tolerance between overexpressing and wild-type A. thaliana. Subcellular localization showed that the gene encoding protein was mainly located in the cell membrane and nucleus. TaDi19 was overexpressed in wild-type A. thaliana, and the transgenic lines were more salt-tolerant than the control A. thaliana. Thus, the wheat gene TaDi19 could increase the salt tolerance of A. thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号