首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We investigated mitotic delay during replication arrest (the S-M checkpoint) in DT40 B-lymphoma cells deficient in the Chk1 or Chk2 kinase. We show here that cells lacking Chk1, but not those lacking Chk2, enter mitosis with incompletely replicated DNA when DNA synthesis is blocked, but only after an initial delay. This initial delay persists when S-M checkpoint failure is induced in Chk2-/- cells with the Chk1 inhibitor UCN-01, indicating that it does not depend on Chk1 or Chk2 activity. Surprisingly, dephosphorylation of tyrosine 15 did not accompany Cdc2 activation during premature entry to mitosis in Chk1-/- cells, although mitotic phosphorylation of cyclin B2 did occur. Previous studies have shown that Chk1 is required to stabilize stalled replication forks during replication arrest, and strikingly, premature mitosis occurs only in Chk1-deficient cells which have lost the capacity to synthesize DNA as a result of progressive replication fork inactivation. These results suggest that Chk1 maintains the S-M checkpoint indirectly by preserving the viability of replication structures and that it is the continued presence of such structures, rather than the activation of Chk1 per se, which delays mitosis until DNA replication is complete.  相似文献   

2.
Chk1 is a multifunctional protein kinase that plays essential roles in cell survival and cell cycle checkpoints. Chk1 is phosphorylated at multiple sites by several protein kinases, but the precise effects of these phosphorylations are largely unknown. Using a knockout-knockin system, we examined the abilities of Chk1 mutants to reverse the defects of Chk1-null cells. Wild-type Chk1 could rescue all the defects of Chk1-null cells. Like endogenous Chk1, wild-type Chk1 localized in both the cytoplasm and the nucleus, and its centrosomal association was enhanced by DNA damage. The mutation at S345 resulted in mitotic catastrophe, impaired checkpoints, and loss of the ability to localize in the cytoplasm, but the mutant retained the ability to be released from chromatin upon encountering genotoxic stressors. In contrast, the mutation at S317 resulted in impaired checkpoints and loss of chromatin release upon encountering genotoxic stressors, but its mutant retained the abilities to prevent mitotic catastrophes and to localize in the cytoplasm, suggesting the distinct effects of these phosphorylations. The forced immobilization of S317A/S345A in centrosomes resulted in the prevention of apoptosis in the presence or absence of DNA damage. Thus, two-step phosphorylation of Chk1 at S317 and S345 appeared to be required for proper localization of Chk1 to centrosomes.  相似文献   

3.
4.
NK cells are innate immune lymphocytes important for early host defense against infectious pathogens and malignant transformation. MicroRNAs (miRNAs) are small RNA molecules that regulate a wide variety of cellular processes, typically by specific complementary targeting of the 3'UTR of mRNAs. The Dicer1 gene encodes a conserved enzyme essential for miRNA processing, and Dicer1 deficiency leads to a global defect in miRNA biogenesis. In this study, we report a mouse model of lymphocyte-restricted Dicer1 disruption to evaluate the role of Dicer1-dependent miRNAs in the development and function of NK cells. As expected, Dicer1-deficient NK cells had decreased total miRNA content. Furthermore, miRNA-deficient NK cells exhibited reduced survival and impaired maturation defined by cell surface phenotypic markers. However, Dicer1-deficient NK cells exhibited enhanced degranulation and IFN-γ production in vitro in response to cytokines, tumor target cells, and activating NK cell receptor ligation. Moreover, a similar phenotype of increased IFN-γ was evident during acute MCMV infection in vivo. miRs-15a/15b/16 were identified as abundant miRNAs in NK cells that directly target the murine IFN-γ 3'UTR, thereby providing a potential mechanism for enhanced IFN-γ production. These data suggest that the function of miRNAs in NK cell biology is complex, with an important role in NK cell development, survival, or homeostasis, while tempering peripheral NK cell activation. Further study of individual miRNAs in an NK cell specific fashion will provide insight into these complex miRNA regulatory effects in NK cell biology.  相似文献   

5.
M Qu  B Yang  L Tao  JR Yates  P Russell  MQ Dong  LL Du 《PLoS genetics》2012,8(7):e1002817
In response to DNA damage, the eukaryotic genome surveillance system activates a checkpoint kinase cascade. In the fission yeast Schizosaccharomyces pombe, checkpoint protein Crb2 is essential for DNA damage-induced activation of downstream effector kinase Chk1. The mechanism by which Crb2 mediates Chk1 activation is unknown. Here, we show that Crb2 recruits Chk1 to double-strand breaks (DSBs) through a direct physical interaction. A pair of conserved SQ/TQ motifs in Crb2, which are consensus phosphorylation sites of upstream kinase Rad3, is required for Chk1 recruitment and activation. Mutating both of these motifs renders Crb2 defective in activating Chk1. Tethering Crb2 and Chk1 together can rescue the SQ/TQ mutations, suggesting that the main function of these phosphorylation sites is promoting interactions between Crb2 and Chk1. A 19-amino-acid peptide containing these SQ/TQ motifs is sufficient for Chk1 binding in vitro when one of the motifs is phosphorylated. Remarkably, the same peptide, when tethered to DSBs by fusing with either recombination protein Rad22/Rad52 or multi-functional scaffolding protein Rad4/Cut5, can rescue the checkpoint defect of crb2Δ. The Rad22 fusion can even bypass the need for Rad9-Rad1-Hus1 (9-1-1) complex in checkpoint activation. These results suggest that the main role of Crb2 and 9-1-1 in DNA damage checkpoint signaling is recruiting Chk1 to sites of DNA lesions.  相似文献   

6.
Mutation T4825I in the type 1 ryanodine receptor (RYR1(T4825I/+)) confers human malignant hyperthermia susceptibility (MHS). We report a knock-in mouse line that expresses the isogenetic mutation T4826I. Heterozygous RYR1(T4826I/+) (Het) or homozygous RYR1(T4826I/T4826I) (Hom) mice are fully viable under typical rearing conditions but exhibit genotype- and sex-dependent susceptibility to environmental conditions that trigger MH. Hom mice maintain higher core temperatures than WT in the home cage, have chronically elevated myoplasmic[Ca(2+)](rest), and present muscle damage in soleus with a strong sex bias. Mice subjected to heat stress in an enclosed 37°C chamber fail to trigger MH regardless of genotype, whereas heat stress at 41°C invariably triggers fulminant MH in Hom, but not Het, mice within 20 min. WT and Het female mice fail to maintain euthermic body temperature when placed atop a bed whose surface is 37°C during halothane anesthesia (1.75%) and have no hyperthermic response, whereas 100% Hom mice of either sex and 17% of the Het males develop fulminant MH. WT mice placed on a 41°C bed maintain body temperature while being administered halothane, and 40% of the Het females and 100% of the Het males develop fulminant MH within 40 min. Myopathic alterations in soleus were apparent by 12 mo, including abnormally distributed and enlarged mitochondria, deeply infolded sarcolemma, and frequent Z-line streaming regions, which were more severe in males. These data demonstrate that an MHS mutation within the S4-S5 cytoplasmic linker of RYR1 confers genotype- and sex-dependent susceptibility to pharmacological and environmental stressors that trigger fulminant MH and promote myopathy.  相似文献   

7.
Many cancer cells are unable to maintain a numerically stable chromosome complement. It is well established that aberrant cell division can generate progeny with increased ploidy, but the genetic factors required for maintenance of diploidy are not well understood. Using an isogenic model system derived by gene targeting, we examined the role of Chk1 in p53-proficient and -deficient cancer cells. Targeted inactivation of a single CHK1 allele in stably diploid cells caused an elevated frequency of mitotic bypass if p53 was naturally mutated or experimentally disrupted by homologous recombination. CHK1-haploinsufficient, p53-deficient cells frequently underwent sequential rounds of DNA synthesis without an intervening mitosis. These aberrant cell cycles resulted in whole-genome endoreduplication and tetraploidization. The unscheduled bypass of mitosis could be suppressed by targeted reversion of a p53 mutation or by exogenous expression of Cdk1. In contrast, the number of tetraploid cells was not increased in isogenic cell populations that harbor hypomorphic ATR mutations, suggesting that suppression of unscheduled mitotic bypass is a distinct function of Chk1. These results are consistent with a recently described role for Chk1 in promoting the expression of genes that promote cell cycle transitions and demonstrate how Chk1 might prevent tetraploidization during the cancer cell cycle.  相似文献   

8.
Many cancer cells are unable to maintain a numerically stable chromosome complement. It is well established that aberrant cell division can generate progeny with increased ploidy, but the genetic factors required for maintenance of diploidy are not well understood. Using an isogenic model system derived by gene targeting, we examined the role of Chk1 in p53-proficient and -deficient cancer cells. Targeted inactivation of a single CHK1 allele in stably diploid cells caused an elevated frequency of mitotic bypass if p53 was naturally mutated or experimentally disrupted by homologous recombination. CHK1-haploinsufficient, p53-deficient cells frequently underwent sequential rounds of DNA synthesis without an intervening mitosis. These aberrant cell cycles resulted in whole-genome endoreduplication and tetraploidization. The unscheduled bypass of mitosis could be suppressed by targeted reversion of a p53 mutation or by exogenous expression of Cdk1. In contrast, the number of tetraploid cells was not increased in isogenic cell populations that harbor hypomorphic ATR mutations, suggesting that suppression of unscheduled mitotic bypass is a distinct function of Chk1. These results are consistent with a recently described role for Chk1 in promoting the expression of genes that promote cell cycle transitions and demonstrate how Chk1 might prevent tetraploidization during the cancer cell cycle.  相似文献   

9.
All eukaryotes respond to DNA damage by modulation of diverse cellular processes to preserve genomic integrity and ensure survival. Here we identify mammalian Tousled like kinases (Tlks) as a novel target of the DNA damage checkpoint. During S-phase progression, when Tlks are maximally active, generation of DNA double-strand breaks (DSBs) leads to rapid and transient inhibition of Tlk activity. Experiments with chemical inhibitors, genetic models and gene targeting through RNA interference demonstrate that this response to DSBs requires ATM and Chk1 function. Chk1 phosphorylates Tlk1 on serine 695 (S695) in vitro, and this UCN-01- and caffeine-sensitive site is phosphorylated in vivo in response to DNA damage. Substitution of S695 to alanine impaired efficient downregulation of Tlk1 after DNA damage. These findings identify an unprecedented functional co- operation between ATM and Chk1 in propagation of a checkpoint response during S phase and suggest that, through transient inhibition of Tlk kinases, the ATM-Chk1-Tlk pathway may regulate processes involved in chromatin assembly.  相似文献   

10.
Although the linkage of Chk1 and Chk2 to important cancer signalling suggests that these kinases have functions as tumour suppressors, neither Chk1+/− nor Chk2−/− mice show a predisposition to cancer under unperturbed conditions. We show here that Chk1+/−Chk2−/− and Chk1+/−Chk2+/− mice have a progressive cancer-prone phenotype. Deletion of a single Chk1 allele compromises G2/M checkpoint function that is not further affected by Chk2 depletion, whereas Chk1 and Chk2 cooperatively affect G1/S and intra-S phase checkpoints. Either or both of the kinases are required for DNA repair depending on the type of DNA damage. Mouse embryonic fibroblasts from the double-mutant mice showed a higher level of p53 with spontaneous DNA damage under unperturbed conditions, but failed to phosphorylate p53 at S23 and further induce p53 expression upon additional DNA damage. Neither Chk1 nor Chk2 is apparently essential for p53- or Rb-dependent oncogene-induced senescence. Our results suggest that the double Chk mutation leads to a high level of spontaneous DNA damage, but fails to eliminate cells with damaged DNA, which may ultimately increase cancer susceptibility independently of senescence.  相似文献   

11.
Replication stress impedes DNA polymerase progression causing activation of the ataxia telangiectasia and Rad3-related signaling pathway, which promotes the intra-S phase checkpoint activity through phosphorylation of checkpoint kinase 1 (Chk1). Chk1 suppresses replication origin firing, in part, by disrupting the interaction between the preinitiation complex components Treslin and TopBP1, an interaction that is mediated by TopBP1 BRCT domain-binding to two cyclin-dependent kinase (CDK) phosphorylation sites, T968 and S1000, in Treslin. Two nonexclusive models for how Chk1 regulates the Treslin–TopBP1 interaction have been proposed in the literature: in one model, these proteins dissociate due to a Chk1-induced decrease in CDK activity that reduces phosphorylation of the Treslin sites that bind TopBP1 and in the second model, Chk1 directly phosphorylates Treslin, resulting in dissociation of TopBP1. However, these models have not been formally examined. We show here that Treslin T968 phosphorylation was decreased in a Chk1-dependent manner, while Treslin S1000 phosphorylation was unchanged, demonstrating that T968 and S1000 are differentially regulated. However, CDK2-mediated phosphorylation alone did not fully account for Chk1 regulation of the Treslin–TopBP1 interaction. We also identified additional Chk1 phosphorylation sites on Treslin that contributed to disruption of the Treslin–TopBP1 interaction, including S1114. Finally, we showed that both of the proposed mechanisms regulate origin firing in cancer cell line models undergoing replication stress, with the relative roles of each mechanism varying among cell lines. This study demonstrates that Chk1 regulates Treslin through multiple mechanisms to promote efficient dissociation of Treslin and TopBP1 and furthers our understanding of Treslin regulation during the intra-S phase checkpoint.  相似文献   

12.
13.
Gab proteins are intracellular scaffolding and docking molecules involved in signaling pathways mediated by various growth factor, cytokine, or antigen receptors. Gab3 has been shown to act downstream of the macrophage colony-stimulating factor receptor, c-Fms, and to be important for macrophage differentiation. To analyze the physiological role of Gab3, we used homologous recombination to generate mice deficient in Gab3. Gab3(-/-) mice develop normally, are visually indistinguishable from their wild-type littermates, and are healthy and fertile. To obtain a detailed expression pattern of Gab3, we generated Gab3-specific monoclonal antibodies. Immunoblotting revealed a predominant expression of Gab3 in lymphocytes and bone marrow-derived macrophages. However, detailed analysis demonstrated that hematopoiesis in mice lacking Gab3 is not impaired and that macrophages develop in normal numbers and exhibit normal function. The lack of Gab3 expression during macrophage differentiation is not compensated for by increased levels of Gab1 or Gab2 mRNA. Furthermore, Gab3-deficient mice have no major immune deficiency in T- and B-lymphocyte responses to protein antigens or during viral infection. In addition, allergic responses in Gab3-deficient mice appeared to be normal. Together, these data demonstrate that loss of Gab3 does not result in detectable defects in normal mouse development, hematopoiesis, or immune system function.  相似文献   

14.
Chk1 is an evolutionarily conserved protein kinase that regulates cell cycle progression in response to checkpoint activation. In this study, we demonstrated that agents that block DNA replication or cause certain forms of DNA damage induce the phosphorylation of human Chk1. The phosphorylated form of Chk1 possessed higher intrinsic protein kinase activity and eluted more quickly on gel filtration columns. Serines 317 and 345 were identified as sites of phosphorylation in vivo, and ATR (the ATM- and Rad3-related protein kinase) phosphorylated both of these sites in vitro. Furthermore, phosphorylation of Chk1 on serines 317 and 345 in vivo was ATR dependent. Mutants of Chk1 containing alanine in place of serines 317 and 345 were poorly activated in response to replication blocks or genotoxic stress in vivo, were poorly phosphorylated by ATR in vitro, and were not found in faster-eluting fractions by gel filtration. These findings demonstrate that the activation of Chk1 in response to replication blocks and certain forms of genotoxic stress involves phosphorylation of serines 317 and 345. In addition, this study implicates ATR as a direct upstream activator of Chk1 in human cells.  相似文献   

15.
The structure-specific FEN-1 endonuclease has been implicated in various cellular processes, including DNA replication, repair and recombination. In vertebrate cells, however, no in vivo evidence has been provided so far. Here, we knocked out the FEN-1 gene (FEN1) in the chicken DT40 cell line. Surprisingly, homozygous mutant (FEN1–/–) cells were viable, indicating that FEN-1 is not essential for cell proliferation and thus for Okazaki fragment processing during DNA replication. However, compared with wild-type cells, FEN1–/– cells exhibited a slow growth phenotype, probably due to a high rate of cell death. The mutant cells were hypersensitive to methylmethane sulfonate, N-methyl-N′-nitro-N-nitrosoguanidine and H2O2, but not to UV light, X-rays and etoposide, suggesting that FEN-1 functions in base excision repair in vertebrate cells.  相似文献   

16.
The DNA fragmentation factor 45 (DFF45) is a subunit of a heterodimeric DNase complex critical for the induction of DNA fragmentation in vitro. To understand the in vivo role of DFF45 in programmed cell death, we measured the expression of DFF45 during mouse development and compared DNA fragmentation and viability of DFF45-deficient cells with wild-type control cells after activation of apoptosis. We found that DFF45 is ubiquitously expressed throughout mouse development. Moreover, DFF45-deficient thymocytes are resistant to DNA fragmentation with in vivo dexamethasone treatment. Furthermore, primary thymocytes from DFF45 mutant mice are also more resistant to apoptosis than wild-type control cells on exposure to several apoptotic stimuli. Dying DFF45-deficient thymocytes exhibit different morphology than wild-type control cells in that they show reduced degree of chromatin condensation, absent nuclear fragmentation, intranuclear cytoplasmic invagination, and striking nuclear chromatin conglutination after release from disintegrating cells. These results indicate that DFF45 is essential during normal apoptosis.  相似文献   

17.
TLR5-deficient mice have been reported to develop spontaneous intestinal inflammation and metabolic abnormalities. However, we report that TLR5-deficient mice from two different animal colonies display no evidence of basal inflammatory disease, metabolic abnormalities, or enhanced resistance to Salmonella infection. In contrast, the absence of TLR5 hindered the initial activation and clonal expansion of intestinal flagellin-specific CD4 T cells following oral Salmonella infection. Together, these data demonstrate that a basal inflammatory phenotype is not a consistent feature of TLR5-deficient mice and document a novel role for TLR5 in the rapid targeting of flagellin by intestinal pathogen-specific CD4 T cells.  相似文献   

18.
Chk1 is a conserved protein kinase originally identified in fission yeast, required to delay entry of cells with damaged or unreplicated DNA into mitosis. The requirement of Chk1 for both S and G2/M checkpoints has been elucidated while only few studies have connected Chk1 to the mitotic spindle checkpoint. We used a small interference RNA strategy to investigate the role of Chk1 in unstressed conditions. Chk1 depletion in U2OS human osteosarcoma cells inhibited cell proliferation and raised the percentage of cells with a 4N DNA content, which correlated with accumulation of giant polynucleated cells morphologically distinct from apoptotic cells, while no increased number of cells in G2 or mitosis could be detected. Down-regulation of Chk1 also caused accumulation of cells in the last step of cytokinesis, and of tetraploid cells in G1 phase, which coincided with activation of p53 and increased levels of p21. In addition, Chk1-depleted U2OS cells failed to arrest in mitosis after spindle disruption by nocodazole and showed decreased protein levels of Mad2 and BubR1. These studies show that U2OS cells lacking Chk1 undergo abnormal mitosis and fail to activate the spindle checkpoint, suggesting a role of Chk1 in this checkpoint.  相似文献   

19.
The behavior of Aeromonas hydrophila stored at 4 degrees C and 25 degrees C in nutrient-poor filtered sterilized distilled water was investigated. At 4 degrees C, the A. hydrophila population declined below the detection level (0.1 cell mL(-1)) after 7 weeks, whereas the number of cells with intact membrane as determined by the LIVE/DEAD method decreased only by 1 log unit. Although, this response is reminiscent of the so-called VBNC state, the cells could not be resuscitated by an upshift to 25 degrees C. A mixture of rods with normal size and elongated cells was observed in this state. At 25 degrees C, viable cells and cells with intact membrane declined only by 0.8 log unit over the 10-week storage period, and thus A. hydrophila entered the classical starvation survival state. During this state, a mixture of rods and cocci was observed. Prestarvation at 25 degrees C for 24 h and especially 49 days delayed significantly the rate of entry into the VBNC state. However, stationary phase cells were not significantly more tolerant than exponential phase cells. No significant improvements in recovery yield were obtained on LB agar plates amended with catalase or sodium pyruvate. During cold incubation, high variability in responses was observed. Intermittent cryptic regrowth might be responsible for this variability in responses.  相似文献   

20.
The eukaryotic SNM1 gene family has been implicated in a number of cellular pathways, including repair of DNA interstrand cross-links, involvement in VDJ recombination, repair of DNA double-strand breaks, and participation in cell cycle checkpoint pathways. In particular, mammalian SNM1 has been shown to be required in a mitotic checkpoint that causes arrest of cells in prophase prior to chromosome condensation in response to spindle poisons. Here, we report on the phenotype of a knockout of Snm1 in the mouse. Snm1-/- mice are viable and fertile but exhibit a complex phenotype. Both homozygous and heterozygous mice show a decline in survival compared to wild-type littermates. In homozygous mutant males, this reduction in survival is principally due to bacterial infections in the preputial and mandibular glands and to a lesser extent to tumorigenesis, while in homozygous and heterozygous females, it is due almost solely to tumorigenesis. The high incidence of bacterial infections in the homozygous mutant males suggests an immune dysfunction; however, examinations of T- and B-cell development and immunoglobulin class switching did not reveal a defect in these pathways. Crossing of Snm1 mutant mice with a Trp53 null mutant resulted in an increase in mortality and a restriction of the tumor type to lymphomas, particularly those of the thymus. Taken together, these findings demonstrate that Snm1 is a tumor suppressor in mice that in addition has a role in immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号