首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strains of Sindbis virus differ in their virulence for mice of different ages; this variation is related in large part to variations in the amino acid compositions of E1 and E2, the surface glycoproteins. The comparative pathogenesis of Sindbis virus strains which are virulent or avirulent for newborn mice has not been previously examined. We have studied the diseases caused by a virulent wild-type strain, AR339, and two less virulent laboratory strains, Toto1101 and HRSP (HR small plaque). After peripheral inoculation of 1,000 PFU, AR339 causes 100% mortality within 5 days (50% lethal dose [LD50] = 3 PFU) while Toto1101 causes 70% mortality (LD50 = 10(2.4) PFU) and HRSP causes 50 to 60% mortality (LD50 = 10(5.1) PFU) with most deaths occurring 7 to 11 days after infection. However, after intracerebral inoculation of 1,000 PFU, Toto1101 is virulent (100% mortality within 5 days; LD50 = 4 PFU) while HRSP is not (75% mortality; LD50 = 10(4.2) PFU). After intracerebral inoculation, all three strains initiate new virus formation within 4 h, but HRSP reaches a plateau of 10(6) PFU/g of brain while Toto1101 and AR339 replicate to a level of 10(8) to 10(9) PFU/g of brain within 24 h. Interferon induction parallels virus growth. Mice infected with HRSP develop persistent central nervous system infection (10(6) PFU/g of brain) until the initiation of a virus-specific immune response 7 to 8 days after infection when virus clearance begins. The distribution of virus in the brains of mice was similar, but the virus was more abundant in the case of AR339. HRSP continued to spread until day 9. Clearance from the brain was complete by day 17. We conclude that the decreased virulence of HRSP is due to an intrinsic decreased ability of this strain of Sindbis virus to grow in neural cells of the mouse. We also conclude that CD-1 mice do not respond to the antigens of Sindbis virus until approximately 1 week of age. This lack of response does not lead to tolerance and persistent infection but rather to late virus clearance whenever the immune response is initiated.  相似文献   

2.
The LD50 for encephalitis caused by Semliki forest virus in 6- to 8-week-old mice is 1 plaque-forming unit (PFU) in C3H/Ten strain of mice when injected intracerebrally, iv, or in the footpad; however, the LD50 by the ip route is 4 x 10(3) PFU. In the ICR strain of mice at the same age, the LD50 for the intracerebral route is 1 PFU, 10(3) PFU for the iv and footpad routes, and 4 x 10(3) PFU for the ip route. A number of in vivo and in vitro experiments were done to explain the relative resistance to Semliki forest virus injection by the ip route. The results suggest that the viruses are adsorbed to and enter adherent cells of the peritoneal cavity but do not replicate and release progeny virus. After inoculation with the virus, viral antigens could only be observed in methanol-treated cells as a halo by immunofluorescence at or just below the plasma membrane of only a small fraction (less than 0.5%) of peritoneal adherent cells. Naturally occurring interferon-alpha/beta (less than 1 unit/ml) was found to probably play a marginal role, if any, in the resistance.  相似文献   

3.
After intraperitoneal inoculation with a high-virulent mouse hepatitis virus (MHV) a significant difference was seen in survival time between DDD and CDF1 (BALB/c X DDD) mice, while 50% lethal doses were not significantly different. With 3 X 10(3) PFU of the virus CDF1 and DDD mice died in 45 and 120 hr, respectively, on the average. This difference of susceptibility between DDD and CDF1 mice was first demonstrable at the age of 1 week and was more pronounced at the age of 4 weeks but showed no dependence of the sex. Virus titers ran 2 to 3 log higher in the liver and blood of CDF1 than in those of DDD mice, while being only 1 log higher in the spleen. At an early stage of infection viral antigen was demonstrable by immunofluorescence in sinusoidal lining cells of the liver more prominently in VDF1 than in DDD mice. Interferon production occurring in parallel with virus growth was significantly higher in CDF1 than in DDD mice. In DDD mice, liver lesions were rather focal with some accumulation of round cells, while they were confluent with poor cellular response in CDF1 mice. Viral growth in cultured peritoneal macrophages from CDF1 mice was 1 log higher than in those from DDD mice. The results suggest that the divergence in response to MHV among susceptible mice greatly depends upon the susceptibility of macrophages and reticuloendothelial cells which constitute primary targets of the virus.  相似文献   

4.
Interferon (IFN) type I (alpha/beta IFN [IFN-alpha/beta]) is very important in directly controlling herpes simplex virus type I (HSV-1) replication as well as in guiding and upregulating specific immunity against this virus. By contrast, the roles of IFN type II (IFN-gamma) and antibodies in the defense against HSV-1 are not clear. Mice without a functional IFN system and no mature B and T cells (AGR mice) did not survive HSV-1 infection in the presence or absence of neutralizing antibodies to the virus. Mice without a functional IFN type I system and with no mature B and T cells (AR129 mice) were unable to control infection with as little as 10 PFU of HSV-1 strain F. By contrast, in the presence of passively administered neutralizing murine antibodies to HSV-1, some AR129 mice survived infection with up to 10(4) PFU of HSV-1. This acute immune response was dependent on the presence of interleukin-12 (IL-12) p75. Interestingly, some virus-infected mice stayed healthy for several months, at which time antibody to HSV-1 was no longer detectable. Treatment of these virus-exposed mice with dexamethasone led to death in approximately 40% of the mice. HSV-1 was found in brains of mice that did not survive dexamethasone treatment, whereas HSV-1 was absent in those that survived the treatment. We conclude that in the presence of passively administered HSV-1-specific antibodies, the IL-12-induced IFN-gamma-dependent innate immune response is able to control low doses of virus infection. Surprisingly, in a significant proportion of these mice, HSV-1 appears to persist in the absence of antibodies and specific immunity.  相似文献   

5.
Mouse serum interferons induced by polyI:C, vesicular stomatitis virus (VSV), reovirus, and Mengo virus were assayed in monolayers of mouse L-929 cells by the plaque-reduction method using both VSV and Mengo as challenge viruses. Titers obtained with Mengo virus as challenge were all lower than with VSV. With the interferons induced by VSV, reovirus, and ployI:C, the reductions were of the order of two- to three-fold. With Mengo virus-induced interferon the reduction was much greater (about 17-fold). This offers an explanation for the observation that, unit for unit (measured by the plaque reduction of VSV), Mengo virus-induced interferon is only about 1/10 as effective as polyI:C-induced interferon in protecting mice against lethal infection with Mengo virus. The data are consistent with the hypothesis that an interferon antagonist is produced in the serum of mice infected with Mengo virus. This antagonist, which is not produced in mice inoculated with polyI:C, or reovirus, effectively blocks the antiviral action of interferon during Mengo virus infections, both in vivo and in vitro.  相似文献   

6.
Inoculation of Ehrlich ascites carcinoma cells (EAC) into the peritoneal cavities of outbred ddY mice induced interferon (IFN) in the circulation. The maximum titer (1,280 U) was obtained at 24 hr after inoculation. This induced IFN had the characteristics of type I IFN, i.e., stability at pH2 and lability at 56 C. An increase in natural killer cell (NK) activity was also observed for the first 3 days after inoculation. In addition, plasma lactate dehydrogenase (LDH) activity was elevated in these mice. Inoculation of ascitic fluid or serum of EAC-bearing mice into normal mice increased plasma LDH activity six- to sevenfold over normal levels and elevated activities persisted throughout the life of the mice. These results suggest that the LDH-elevating agent was responsible for IFN induction and for enhancing NK activity. Because lactate dehydrogenase-elevating virus (LDV) can be eliminated from tumor cells by passage in vitro, we attempted to grow EAC in tissue culture for several months and re-examined whether the inoculation of such cells could elevate plasma LDH activity induce IFN and enhance NK activity. The results showed that inoculation of the passaged cells had no effect on these activities in normal mice. Therefore, we concluded that the IFN inducer was LDV which contaminated the EAC and then enhanced the NK activity. N-tropic murine leukemia virus also contaminated EAC, but this virus was not responsible because cultured cells of EAC still shed this virus.  相似文献   

7.
Murine gammaherpesvirus 68 (gammaHV68) infection of mice provides a tractable small-animal model system for assessing the requirements for the establishment and maintenance of gammaherpesvirus latency within the lymphoid compartment. The M2 gene product of gammaHV68 is a latency-associated antigen with no discernible homology to any known proteins. Here we focus on the requirement for the M2 gene in splenic B-cell latency. Our analyses showed the following. (i) Low-dose (100 PFU) inoculation administered via the intranasal route resulted in a failure to establish splenic B-cell latency at day 16 postinfection. (ii) Increasing the inoculation dose to 4 x 10(5) PFU administered via the intranasal route partially restored the establishment of B-cell latency at day 16, but no virus reactivation was detected upon explant into tissue cultures. (iii) Although previous data failed to detect a phenotype of the M2 mutant upon high-dose intraperitoneal inoculation, decreasing the inoculation dose to 100 PFU administered intraperitoneally revealed a splenic B-cell latency phenotype at day 16 that was very similar to the phenotype observed upon high-dose intranasal inoculation. (iv) After low-dose intraperitoneal inoculation, fractionated B-cell populations showed that the M2 mutant virus was able to establish latency in surface immunoglobulin D-negative (sIgD(-)) B cells; by 6 months postinfection, equivalent frequencies of M2 mutant and marker rescue viral genome-positive sIgD(-) B cells were detected. (v) Like the marker rescue virus, the M2 mutant virus also established latency in splenic naive B cells upon low-dose intraperitoneal inoculation, but there was a significant lag in the decay of this latently infected reservoir compared to that seen with the marker rescue virus. (vi) After low-dose intranasal inoculation, by day 42 postinfection, latency was observed in the spleen, although at a frequency significantly lower than that in the marker rescue virus-infected mice; by 3 months postinfection, nearly equivalent levels of viral genome-positive cells were observed in the spleens of marker rescue virus- and M2 mutant virus-infected mice, and these cells were exclusively sIgD(-) B cells. Taken together, these data convincingly demonstrate a role for the M2 gene product in reactivation from splenic B cells and also suggest that disruption of the M2 gene leads to dose- and route-specific defects in the efficient establishment of splenic B-cell latency.  相似文献   

8.
Exposure to the nerve agent soman, an irreversible cholinesterase (ChE) inhibitor, results in changes in blood-brain barrier permeability attributed to its seizure-induced activity. However, smaller BBB changes may be independent of convulsions. Such minor injury may escape detection. A nonneuroinvasive neurovirulent Sindbis virus strain (SVN) was used as a marker for BBB permeability. Peripheral inoculation of mice with 2 x 10(3) plaque forming units (PFU) caused up to 10(5) PFU/ml viremia after 24 hours with no signs of central nervous system (CNS) infection and with no virus detected in brain tissue. Intra-cerebral injection of as low as 1-5 PFU of the same virus caused CNS infection, exhibited 5-7 days later as hind limb paralysis and death. Soman (0.1-0.7 of the LD50) was administered at peak viremia (1 day following peripheral inoculation). Sublethal soman exposure at as low as 0.1 LD50 resulted in CNS infection 6-8 days following inoculation in 30-40% of the mice. High virus titer were recorded in brain tissue of sick mice while no virus was detected in healthy mice subjected to the same treatment. No changes in the level of viremia or changes in viral traits were observed in the infected mice. The reversible anticholinesterases physostigmine (0.2 mg/kg, s.c.) and pyridostigmine (0.4 mg/kg, i.m.) injected at a dose equal to 0.1 LD50, induced similar results. Thus, both central and peripheral anticholinesterases (anti-ChEs) induce changes in BBB permeability sufficient to allow, at least in some of the mice, the invasion of this otherwise noninvasive but highly neurovirulent virus. This BBB change is probably due to the presence of cholinesterases in the capillary wall. SVN brain invasion served here as a highly sensitive and reliable marker for BBB integrity.  相似文献   

9.
A herpes simplex virus type 2 (HSV-2) UL24 beta-glucuronidase (UL24-betagluc) insertion mutant was derived from HSV-2 strain 186 via standard marker transfer techniques. Cell monolayers infected with UL24-betagluc yielded cytopathic effect with syncytium formation. UL24-betagluc replicated to wild-type viral titers in three different cell lines. UL24-betagluc was not virulent after intravaginal inoculation of BALB/c mice in that all inoculated animals survived doses up to 400 times the 50% lethal dose (LD50) of the parental virus. Furthermore, few UL24-betagluc-inoculated mice developed any vaginal lesions. Intravaginal inoculation of guinea pigs with UL24-betagluc at a dose equivalent to the LD50 of parental virus (approximately 5 x 10(3) PFU) was not lethal (10/10 animals survived). Although genital lesions developed in some UL24-betagluc-inoculated guinea pigs, both the overall number of lesions and the severity of disease were far less than that observed for animals infected with parental strain 186.  相似文献   

10.
C57BL/6 mice develop a virus-specific cytotoxic T-lymphocyte (CTL) response after intraperitoneal inoculation with either the DA strain of Theiler's virus or Mengo virus, two members of the Cardiovirus genus. These CTLs contribute to viral clearance in the case of Theiler's virus but do not protect the mice from the fatal encephalomyelitis caused by Mengo virus. In this study we show that DA and Mengo virus-induced CTLs are cross-reactive. The cross-reactivity is due to a conserved, H-2Db-restricted epitope located between amino acid residues 122 and 130 of the VP2 capsid protein (VP2(122-130)). This epitope is immunodominant in C57BL/6 mice infected with Theiler's virus. The VP2(122-130) epitope, initially identified for Mengo virus, is the first CTL epitope described for Theiler's virus.  相似文献   

11.
Mice inoculated intracerebrally with 10(3) PFU of vaccinia virus developed a nonfatal meningitis which was maximal 7 days after challenge. Intravenous administration of an interferon (IFN) inducer, polyinosinic-polycytidilic polyribonucleotide [poly(I)-poly(C)], on days 4 and 6 postinjection was associated with a three- to fourfold decrease in the number of T lymphocytes present in cerebrospinal fluid, reflected primarily by a decreased number of vaccinia virus-specific cytotoxic T-lymphocyte precursors. The lack of a concomitant reduction in the overall cytotoxic activity of cerebrospinal fluid cells directed against virus-infected target cells seemed to be largely due to an increase in natural killer cell activity. IFN was implicated as mediating the effect of poly(I)-poly(C) because high systemic levels of IFN were evident after injection, and neither the magnitude of the inflammatory response nor the T-cell levels were affected when poly(I)-poly(C)-treated mice were also given anti-IFN antiserum. However, the poly(I)-poly(C)-induced IFN did not seem to reduce the localized inflammatory response by affecting viral replication in brain tissue because the vaccinia virus titers present on days 6 through 8 of infection were similar to the titers in phosphate-buffered saline controls. These findings are consistent with either an effect of IFN on T-cell recruitment to the central nervous system or an inhibition of proliferation of cells participating in the response. These findings suggest that there is a potential source of complications for clinical protocols that use IFN or inducers to enhance T-cell function in various disease situations, and this effect of IFN may be a contributing factor to the immunosuppression often associated with many viral infections.  相似文献   

12.
ST-246 is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 microM), selective (concentration of compound that inhibited cell viability by 50% = >40 microM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. Cowpox virus variants selected in cell culture for resistance to ST-246 were found to have a single amino acid change in the V061 gene. Reengineering this change back into the wild-type cowpox virus genome conferred resistance to ST-246, suggesting that V061 is the target of ST-246 antiviral activity. The cowpox virus V061 gene is homologous to vaccinia virus F13L, which encodes a major envelope protein (p37) required for production of extracellular virus. In cell culture, ST-246 inhibited plaque formation and virus-induced cytopathic effects. In single-cycle growth assays, ST-246 reduced extracellular virus formation by 10 fold relative to untreated controls, while having little effect on the production of intracellular virus. In vivo oral administration of ST-246 protected BALB/c mice from lethal infection, following intranasal inoculation with 10x 50% lethal dose (LD(50)) of vaccinia virus strain IHD-J. ST-246-treated mice that survived infection acquired protective immunity and were resistant to subsequent challenge with a lethal dose (10x LD(50)) of vaccinia virus. Orally administered ST-246 also protected A/NCr mice from lethal infection, following intranasal inoculation with 40,000x LD(50) of ectromelia virus. Infectious virus titers at day 8 postinfection in liver, spleen, and lung from ST-246-treated animals were below the limits of detection (<10 PFU/ml). In contrast, mean virus titers in liver, spleen, and lung tissues from placebo-treated mice were 6.2 x 10(7), 5.2 x 10(7), and 1.8 x 10(5) PFU/ml, respectively. Finally, oral administration of ST-246 inhibited vaccinia virus-induced tail lesions in Naval Medical Research Institute mice inoculated via the tail vein. Taken together, these results validate F13L as an antiviral target and demonstrate that an inhibitor of extracellular virus formation can protect mice from orthopoxvirus-induced disease.  相似文献   

13.
Virulence of La Crosse virus is under polygenic control.   总被引:6,自引:5,他引:1       下载免费PDF全文
To identify which RNA segments of the California serogroup bunyaviruses determine virulence, we prepared reassortant viruses by coinfecting BHK-21 cells with two wild-type parents, La Crosse/original and Tahyna/181-57 viruses, which differed about 30,000-fold in virulence. The progeny clones were screened by polyacrylamide gel electrophoresis to ascertain the phenotype of the M and S RNA segments, and RNA-RNA hybridization was used to determine the genotype of selected clones. Two or three clones of each of the six possible reassortant genotypes were characterized quantitatively for neuroinvasiveness by determining the PFU/50% lethal dose (LD50) ratio after subcutaneous injection into suckling mice. The reassortants fell into two groups. (i) Six of seven reassortants with a La Crosse M RNA segment were as virulent as the parent La Crosse virus (about 1 PFU/LD50); the one exception was strikingly different (about 1,000 PFU/LD50) and probably represents a spontaneous mutant. (ii) The seven reassortants with a Tahyna M RNA segment were about 10-fold more virulent than the parent Tahyna virus (median 1,600 PFU/LD50 for reassortants and 16,000 PFU/LD50 for Tahyna virus). A comparative pathogenesis study in suckling mice of one reassortant virus and the parent Tahyna virus confirmed the greater neuroinvasiveness of the reassortant virus. From these data it was concluded that the M RNA segment was the major determinant of virulence, but that the other two gene segments could modulate the virulence of a nonneuroinvasive California serogroup virus.  相似文献   

14.
Intraperitoneal injection of vesicular stomatitis virus (VSV) into mice causes marked and rapid changes in leukocyte distribution. The virus induces an increase in peripheral blood (PB) granulocytes and an extensive decrease in the lymphocyte count which reaches a nadir of less than 10% of preinfection values, 12 hr after virus inoculation. In the lymph nodes and spleen extensive lymphocyte translocation and granulocyte infiltration are observed. Most changes abate 48 hr following virus inoculation. Injection of poly(rI):(rC) causes similar changes to those observed with VSV. The lymphocyte changes observed after injection of VSV or poly(rI):(rC) coincide with high levels of Interferon (IFN) in the serum. We have examined the effects of anti-IFN antibody on those changes and investigated whether they can be mimicked by injecting IFN. Our findings suggest that the IFN induced by VSV or poly(rI):(rC), rather than those agents themselves, causes the observed lymphopenia as well as some of the changes observed in the spleen. On the other hand, the effects of VSV on granulocyte localization do not appear to be mediated by IFN.  相似文献   

15.
The titer of Amsacta entomopoxvirus (EPV) protein detected in murine L-929 cells by enzyme-linked immunosorbent assay (ELISA) decreased to within preimmune serum levels by 24 hr after inoculation of the virus which indicates that Amsacta EPV structural protein biosynthesis does not occur in the vertebrate cell line. A viral-induced protein of approximately 100,000 Mr was detected by [35S]methionine incorporation 4 hr after inoculation of Tn-368 cells with Amsacta EPV. Biosynthesis of protein which reacted with vaccina antiserum was detected in Estigmene acrea (BTI-EAA) cells by ELISA 10 hr after inoculation with 10 PFU of virus per cell. The amount of putative vaccinia structural protein detected in BTI-EAA cells increased approximately twofold by 70 hr after virus inoculation. No increase in vaccinia structural protein biosynthesis was detected in BTI-EAA cells inoculated with vaccinia virus previously inactivated by heat and UV light.  相似文献   

16.
Y H Su  J E Oakes    R N Lausch 《Journal of virology》1990,64(5):2187-2192
BALB/c mice infected on the scarified cornea with herpes simplex virus type 1 strain 35 [HSV-1(35)] rarely developed ocular disease even at challenge doses as high as 10(7) PFU per eye. In contrast, HSV-1(RE) consistently induced stromal keratitis at an inoculum of 2 x 10(4) PFU. The goal of this study was to determine the reason for the difference in virulence between the two HSV strains. Both HSV-1 strains replicated to similar titers in excised corneal "buttons." However, after in vivo infection of the cornea, the growth of strain 35 was evident only during the first 24 h postinfection, whereas the replication of strain RE persisted for at least 4 days. In vitro tests revealed that HSV-1(35) was greater than 10 times more sensitive to alpha/beta interferon (IFN-alpha/beta) than HSV-1(RE). Both strains induced comparable serum levels of IFN after intraperitoneal inoculation. The kinetics of HSV-1(35) clearance from the eye was markedly altered by treatment with rabbit anti-IFN-alpha/beta. Virus titers exceeding 10(4) PFU per eye could be demonstrated 4 to 5 days postinfection in mice given a single inoculation of antiserum 1 h after infection. Furthermore, anti-IFN treatment in 3-week-old mice infected with HSV-1(35) led to the development of clinically apparent corneal disease which subsequently progressed to stromal keratitis in the majority of recipients. These results indicate that the striking difference in the capacity of HSV-1(35) and HSV-1(RE) to induce corneal disease was related to the inherently greater sensitivity of strain 35 to IFN-alpha/beta produced by the host in response to infection.  相似文献   

17.
Weanling ICR albino Swiss mice were inoculated ip with 1.9 x 10(4) PFU of coxsackievirus B-3 (Nancy) and subsequently forced to swim vigorously daily in a preheated pool (33 degrees). Viremias and virus in hearts of exercised mice were respectively 75 x 1000 x greater than in infected, but not exercised mice. At 24 hr after inoculation, pooled serum from mice that had been swum had no circulating interferon, while infected but not swum mice had interferon activity at a dilution of 1:10. At 72 hr after infection, circulating interferon disappeared from infected (not swum) mice, but continued to be present in high titers through the sixth day in sucklings forced to swim. Interferon was first detected in the hearts of both groups at 48 hr. Quantities in both infected groups were generally similar. Neutralizing antibodies were found in these baby mice on the 13th day of infection and were 16 x greater in nurslings that were not exercised. Measures of corticosterone taken at 4 PM daily were similar in infected, infected-swum, and uninfected mice.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) mutants that are attenuated for neurovirulence are being used for the treatment of cancer. We have examined the safety of G207, a multimutated replication-competent HSV-1 vector, in mice. BALB/c mice inoculated intracerebrally or intracerebroventricularly with 10(7) PFU of G207 survived for over 20 weeks with no apparent symptoms of disease. In contrast, over 80% of animals inoculated intracerebrally with 1.5 x 10(3) PFU of HSV-1 wild-type strain KOS and 50% of animals inoculated intracerebroventricularly with 10(4) PFU of wild-type strain F died within 10 days. Similarly, after intrahepatic inoculation of G207 (3 x 10(7) PFU) all animals survived for over 10 weeks, whereas no animals survived for even 1 week after inoculation with 10(6) PFU of KOS. After intracerebroventricular inoculation, LacZ expression was initially observed in the cells lining the ventricles and subarachnoid space; expression decreased until almost absent within 5 days postinfection, with no apparent loss of ependymal cells. G207 DNA could be detected by PCR in the brains of mice 8 weeks after intracerebral inoculation; however, no infectious virus could be detected after 2 days. As a model for latent HSV in the brain, we used survivors of an intracerebral inoculation of HSV-1 KOS at the 50% lethal dose. Inoculation of a high dose of G207 at the same stereotactic coordinates did not result in reactivation of detectable infectious virus or symptoms of disease. We conclude that G207 is safe at or above doses that were efficacious in mouse tumor studies.  相似文献   

19.
The present studies were designed to evaluate the effects of substance or substances extracted from Escherichia coli on Herpes Simplex Virus. The "in vivo" assays show that bacterial extract introduced i.p. in mice simultaneously with HSV2 brought about 100% of survival, but the inoculation of crude extract after virus challenge brought about complete mortality of mice. "In vitro" assays show that the crude extract reduced significantly the numbers of PFU; better results were obtained when the crude extract was inoculated before the virus inoculation.  相似文献   

20.
The role of natural killer (NK) cells in the natural resistance of mice to infections by several viruses was examined. Mice were specifically depleted of NK cells by i.v. injection of rabbit antiserum to asialo GM1, a neutral glycosphingolipid present at high concentrations on the surface of NK cells. Control mice were left untreated or were injected with normal rabbit serum. Four to 6 hr later, these mice were infected with lymphocytic choriomeningitis virus (LCMV), mouse hepatitis virus (MHV), murine cytomegalovirus (MCMV), or vaccinia virus. The mice were sacrificed 3 days post-infection and assayed for virus in liver and spleen, spleen NK cell activity, and plasma interferon (IFN). All mice treated with anti-asialo GM1 antibody had drastically reduced NK cell-mediated lysis. Correlating with NK cell depletion, these mice had significantly higher (up to 500-fold) titers of MCMV, MHV, or vaccinia virus in their livers and spleens as compared to control mice. NK cell-depleted MCMV and MHV-infected mice had higher levels of plasma IFN than controls, correlating with the higher virus titers. These NK cell-depleted, virus-infected mice had more extensive hepatitis, assayed by the number of inflammatory foci in their livers, as compared to control virus-infected mice; these foci were also larger and contained more degenerating liver cells than those in control mice. In contrast to the results obtained with MHV, MCMV, and vaccinia virus, NK cell depletion had no effect on virus titers in the early stages of acute LCMV infection or during persistent LCMV infection. Mice depleted of NK cells had similar amounts of LCMV in their spleens and similar plasma IFN levels. Because this antibody to asialo GM1 does not impair other detectable immunologic mechanisms, these data support the hypothesis that NK cells act as a natural resistance mechanism to a number of virus infections, but suggest that their relative importance may vary from virus to virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号