首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pan W  Kastin AJ 《Peptides》2007,28(12):2411-2434
The Tyr-MIF-1 family of small peptides has served a prototypic role in the introduction of several novel concepts into the peptide field of research. MIF-1 (Pro-Leu-Gly-NH2) was the first hypothalamic peptide shown to act “up” on the brain, not just “down” on the pituitary. In several situations, including clinical depression, MIF-1 exhibits an inverted U-shaped dose–response relationship in which increasing doses can result in decreasing effects. This tripeptide also can antagonize opiate actions, and the first report of such activity also correctly predicted the discovery of other endogenous antiopiate peptides. The tetrapeptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) not only shows antiopiate activity, but also considerable selectivity for the mu-opiate binding site. Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2) is an even more selective ligand for the mu receptor, leading to the discovery of two more Tyr-Pro tetrapeptides that have the highest specificity and affinity for this site. These are the endomorphins: endomorphin-1 is Tyr-Pro-Trp-Phe-NH2 and endomorphin-2 is Tyr-Pro-Phe-Phe-NH2. Tyr-MIF-1 proved, contrary to the then prevailing dogma, that peptides can be saturably transported across the blood–brain barrier by a quantifiable transport system. Unexpectedly, the Tyr-MIF-1 transporter is shared with Met-enkephalin. In the era in which it was doubtful whether a peripheral peptide could exert CNS effects, the Tyr-MIF-1 family of peptides also explicitly showed that they can exert more than one central action that persists longer than their half-lives in blood. These peptides clearly illustrate that the name of a peptide restricts neither its actions nor its conceptual implications.  相似文献   

2.
The molecular docking of a series of endomorphin analog with the μ opioid receptor was performed. The successive molecular dynamics of several proposed ligand–receptor complexes inserted into the phospholipid bilayer were carried out to optimize the complex and explore the conformational changes. Meaningful differences of their binding modes were detected and the involvement of some essential residues in ligand binding was also identified. Our proposed ligand–receptor model is in good agreement with previous site-directed mutagenesis experiments.  相似文献   

3.
In this study, silkworm (Bombyx mori) tyrosine hydroxylase was expressed in Escherichia coli. The enzymatic characteristics of the recombinant wild silkworm tyrosine hydroxylase were similar to that of native silkworm tyrosine hydroxylase (BmTH). We investigated the role of the amino acid residue Glu434 of BmTH using site-directed mutagenesis. The activity of the E434A mutant was approximately 35.6 percent of that exhibited by BmTH. Furthermore, the mutation dramatically reduced its substrate affinity for tetrahydrobiopterin and decreased its activation by Fe2+. The E434A mutation impaired the conformational structure of BmTH, resulting in a partially unfolded state with more hydrophobic exposure, a tendency to aggregate and structural instability during environmental stresses. This mutation did not significantly affect a three-step transitional folding process involving two intermediate states in GdnHCl. However, it did affect the structural compactness of the folding intermediates. The results suggest that the Glu434 residue is an important determinant of the activity, stability and conformational structure of BmTH.  相似文献   

4.
Annexin A8 is a relatively infrequent and poorly studied member of this large family of calcium-binding and membrane-binding proteins. It is, however, associated with a specific disease, acute promyelocytic leukemia. We have solved its three-dimensional structure, which includes a moderately long and intact N terminus. The structure is closest to that of annexin A3 and highlights several important regions of inherent flexibility in the annexin molecule. The N terminus resembles that of annexin A3, as it lies along the concave surface of the molecule and inserts partially into the hydrophilic channel in its centre. Since both annexins A3 and A8 are expressed in promyelocytic cells during their differentiation, the similarity in their structures might suggest a functional relationship.  相似文献   

5.
The 1:1 inclusion complex of beta-cyclodextrin and benzamide was prepared and characterized by single crystal X-ray diffraction, PXRD, TGA, and IR. This complex crystallizes in the monoclinic P2(1) space group with unit cell constants a=15.4244(16), b=10.1574(11), c=20.557(2)A, beta=110.074(2) degrees , V=3025.1(6)A(3). The guest molecule projects into the beta-cyclodextrin cavity from the primary hydroxyl side. The amide group protrudes from the primary hydroxyl side and forms hydrogen bonds with the adjacent beta-cyclodextrin molecule. There are six crystallized water molecules, which play crucial roles in crystal packing.  相似文献   

6.
Protein-tyrosine phosphatases catalyze the hydrolysis of phosphate monoesters via a two-step mechanism involving a covalent phospho-enzyme intermediate. Biochemical and site-directed mutagenesis experiments show that the invariant Cys residue present in the PTPase signature motif (H/V)CX(5)R(S/T) (i.e., C215 in PTP1B) is absolutely required for activity. Mutation of the invariant Cys to Ser results in a catalytically inactive enzyme, which still is capable of binding substrates and inhibitors. Although it often is assumed that substrate-trapping mutants such as the C215S retain, in solution, the structural and binding properties of wild-type PTPases, significant differences have been found in the few studies that have addressed this issue, suggesting that the mutation may lead to structural/conformational alterations in or near the PTP1B binding site. Several crystal structures of apo-WT PTP1B, and of WT- and C215S-mutant PTP1B in complex with different ligands are available, but no structure of the apo-PTP1B C215S has ever been reported. In all previously reported structures, residues of the PTPase signature motif have an identical conformation, while residues of the WPD loop (a surface loop which includes the catalytic Asp) assume a different conformation in the presence or absence of ligand. These observations led to the hypothesis that the different spectroscopic and thermodynamic properties of the mutant protein may be the result of a different conformation for the WPD loop. We report here the structure of the apo-PTP1B C215S mutant, which reveals that, while the WPD loop is in the open conformation observed in the apo WT enzyme crystal structure, the residues of the PTPases signature motif are in a dramatically different conformation. These results provide a structural basis for the differences in spectroscopic properties and thermodynamic parameters in inhibitor binding observed for the wild-type and mutant enzymes.  相似文献   

7.
Insulin and insulin-like growth factor 1 (IGF-1) share a homologous sequence, a similar three-dimensional structure and weakly overlapping biological activity, but IGF-1 folds into two thermodynamically stable disulfide isomers, while insulin folds into one unique stable tertiary structure. This is a very interesting phenomenon in which one amino acid sequence encodes two three-dimensional structures, and its molecular mechanism has remained unclear for a long time. In this study, the crystal structure of mini-IGF-1(2), a disulfide isomer of an artificial analog of IGF-1, was solved by the SAD/SIRAS method using our in-house X-ray source. Evidence was found in the structure showing that the intra-A-chain/domain disulfide bond of some molecules was broken; thus, it was proposed that disulfide isomerization begins with the breakdown of this disulfide bond. Furthermore, based on the structural comparison of IGF-1 and insulin, a new assumption was made that in insulin the several hydrogen bonds formed between the N-terminal region of the B-chain and the intra-A-chain disulfide region of the A-chain are the main reason for the stability of the intra-A-chain disulfide bond and for the prevention of disulfide isomerization, while Phe B1 and His B5 are very important for the formation of these hydrogen bonds. Moreover, the receptor binding property of IGF-1 was analyzed in detail based on the structural comparison of mini-IGF-1(2), native IGF-1, and small mini-IGF-1.  相似文献   

8.
Pantothenate is the essential precursor of coenzyme A (CoA), a fundamental cofactor in all aspects of metabolism. In bacteria and eukaryotes, pantothenate synthetase (PS) catalyzes the last step in the pantothenate biosynthetic pathway, and pantothenate kinase (PanK) phosphorylates pantothenate for its entry into the CoA biosynthetic pathway. However, genes encoding PS and PanK have not been identified in archaeal genomes. Recently, a comparative genomic analysis and the identification and characterization of two novel archaea-specific enzymes show that archaeal pantoate kinase (PoK) and phosphopantothenate synthetase (PPS) represent counterparts to the PS/PanK pathway in bacteria and eukaryotes. The TON1374 protein from Thermococcus onnurineus NA1 is a PPS, that shares 54% sequence identity with the first reported archaeal PPS candidate, MM2281, from Methanosarcina mazei and 91% sequence identity with TK1686, the PPS from Thermococcus kodakarensis. Here, we report the apo and ATP-complex structures of TON1374 and discuss the substrate-binding mode and reaction mechanism.  相似文献   

9.
Rab GTPases constitute the largest family of small monomeric GTPases, including over 60 members in humans. These GTPases share conserved residues related to nucleotide binding and hydrolysis, and main sequence divergences lie in the carboxyl termini. They cycle between inactive (GDP-bound) and active (GTP-bound) forms and the active site regions, termed Switch I and II, undergo the larger conformational changes between the two states. The Rab11 subfamily members, comprising Rab11a, Rab11b, and Rab25, act in recycling of proteins from the endosomes to the plasma membrane, in transport of molecules from the trans-Golgi network to the plasma membrane and in phagocytosis. In this work, we describe Rab11b-GDP and Rab11b-GppNHp crystal structures solved to 1.55 and 1.95 angstroms resolution, respectively. Although Rab11b shares 90% amino acid identity to Rab11a, its crystal structure shows critical differences relative to previously reported Rab11a structures. Inactive Rab11a formed dimers with unusually ordered Switch regions and missing the magnesium ion at the nucleotide binding site. In this work, inactive Rab11b crystallized as a monomer showing a flexible Switch I and a magnesium ion which is coordinated by four water molecules, the phosphate beta of GDP (beta-P) and the invariant S25. S20 from the P-loop and S42 from the Switch I are associated to GTP hydrolysis rate. In the active structures, S20 interacts with the gamma-P oxygen in Rab11b-GppNHp but does not in Rab11a-GppNHp and the Q70 side chain is found in different positions. In the Rab11a-GTPgammaS structure, S40 is closer to S25 and S42 does not interact with the gamma-P oxygen. These differences indicate that the Rab11 isoforms may possess different GTP hydrolysis rates. In addition, the Switch II of inactive Rab11b presents a 3(10)-helix (residues 69-73) that disappears upon activation. This 3(10)-helix is not found in the Rab11a-GDP structure, which possesses a longer alpha2 helix, spanning from residue 73 to 82 alpha-helix 5.  相似文献   

10.
A series of novel organoantimony(V) complexes have been synthesised by the reactions of the isomers of chlorophenylacetic acids with triphenylantimony(V) dichloride or tetraphenylantimony(V) bromide in 1:2 or 1:1 stoichiometries. All the complexes have been characterized by elemental analysis, IR and NMR (1H, 13C) spectra analyses; furthermore, complexes 1, 2, 3 and 4 have been determined by X-ray single crystal diffraction. The structure of complexes show that the five-coordinated and six-coordinated antimony(V) atoms adopt distorted trigonal bipyramidal geometry and octahedral geometry. And the structural analyses show that complexes 1 and 3 have 2D network structures; complex 2 possesses a 1D polymeric chain structure and complex 4 has a 3D supramolecular framework.  相似文献   

11.
Phytohormone indole-3-acetic acid (IAA) plays a vital role in regulating plant growth and development. Tryptophan-dependent IAA biosynthesis participates in IAA homeostasis by producing IAA via two sequential reactions, which involve a conversion of tryptophan to indole-3-pyruvic acid (IPyA) by tryptophan aminotransferase (TAA1) followed by the irreversible formation of IAA in the second reaction. Pad-1 from Solanaceae plants regulates IAA levels by catalyzing a reverse reaction of the first step of IAA biosynthesis. Pad-1 is a pyridoxal phosphate (PLP)-dependent aminotransferase, with IPyA as the amino acceptor and l-glutamine as the amino donor. Currently, the structural and functional basis for the substrate specificity of Pad-1 remains poorly understood. In this study, we carried out structural and kinetic analyses of Pad-1 from Solanum melongena. Pad-1 is a homodimeric enzyme, with coenzyme PLP present between a central large α/β domain and a protruding small domain. The active site of Pad-1 includes a vacancy near the phosphate group (P-side) and the 3′-O (O-side) of PLP. These features are distinct from those of TAA1, which is homologous in an overall structure with Pad-1 but includes only the P-side region in the active site. Kinetic analysis suggests that P-side residues constitute a binding pocket for l-glutamine, and O-side residues of Phe124 and Ile350 are involved in the binding of IPyA. These studies illuminate distinct differences in the active site between Pad-1 and TAA1, and provide structural and functional insights into the substrate specificity of Pad-1.  相似文献   

12.
β2-Microglobulin (β2m) forms amyloid fibrils in vitro under acidic conditions. Under these conditions, the residual structure of acid-denatured β2m is relevant to seeding and fibril extension processes. Disulfide (SS) bond-oxidized β2m has been shown to form rigid, ordered fibrils, whereas SS bond-reduced β2m forms curvy, less-ordered fibrils. These findings suggest that the presence of an SS bond affects the residual structure of the monomer, which subsequently influences the fibril morphology. To clarify this process, we herein performed NMR experiments. The results obtained revealed that oxidized β2m contained a residual structure throughout the molecule, including the N- and C-termini, whereas the residual structure of the reduced form was localized and other regions had a random coil structure. The range of the residual structure in the oxidized form was wider than that of the fibril core. These results indicate that acid-denatured β2m has variable conformations. Most conformations in the ensemble cannot participate in fibril formation because their core residues are hidden by residual structures. However, when hydrophobic residues are exposed, polypeptides competently form an ordered fibril. This conformational selection phase may be needed for the ordered assembly of amyloid fibrils.  相似文献   

13.
Endo-inulinase is a member of glycosidase hydrolase family 32 (GH32) degrading fructans of the inulin type with an endo-cleavage mode and is an important class of industrial enzyme. In the present study, we report the first crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum at 1.5 Å. It was solved by molecular replacement with the structure of exo-inulinase as search model. The 3D structure presents a bimodular arrangement common to other GH32 enzymes: a N-terminal 5-fold β-propeller catalytic domain with four β-sheets and a C-terminal β-sandwich domain organized in two β-sheets with five β-strands. The structural analysis and comparison with other GH32 enzymes reveal the presence of an extra pocket in the INU2 catalytic site, formed by two loops and the conserved motif W-M(I)-N-D(E)-P-N-G. This cavity would explain the endo-activity of the enzyme, the critical role of Trp40 and particularly the cleavage at the third unit of the inulin(-like) substrates. Crystal structure at 2.1 Å of INU2 complexed with fructosyl molecules, experimental digestion data and molecular modelling studies support these hypotheses.  相似文献   

14.
《FEBS letters》1994,340(3):255-259
The conformation of [ -MeSer3- -Ser-(O-Gly8]CS, a water soluble cyclosporin derivative, has been determined in (D6)DMSO and in water using NMR. In these polar solvents the conformation is identical and very similar to the structure found in the cyclophilin-cyclosporin complex. However, it differs significantly from its conformation in deuterated chloroform. This demonstrates unambiguously that the large structure change is induced primarily by the polar solvent rather than by complex formation with cyclophilin.  相似文献   

15.
Interactions of the placental glycoprotein hormone human choriogonadotropin (hCG) with lutropin receptors (LHR) are required for maintenance of early pregnancy. Knowledge of how hCG interacts with LHR is useful for understanding the mechanism of receptor function, an issue of considerable debate. A large surface of hCG remains exposed after the hormone binds the LHR and can be readily detected with monoclonal antibodies. Here we show that the surface of hCG α-subunit loop 1 furthest from the β-subunit interface can also be recognized by a monoclonal antibody when hCG is bound to the LHR. This extends the area of hCG known to be exposed in the hormone receptor complex, an observation that further restricts models of hCG–LHR interaction.  相似文献   

16.
The aim of the present study is to understand the structural features responsible for the lethal activity of snake venom cardiotoxins. Comparison of the lethal potency of the five cardiotoxin isoforms isolated from the venom of Taiwan cobra (Naja naja atra) reveals that the lethal potency of CTX I and CTX V are about twice of that exhibited by CTX II, CTX III, and CTX IV. In the present study, the solution structure of CTX V has been determined at high resolution using multidimensional proton NMR spectroscopy and dynamical simulated annealing techniques. Comparison of the high resolution solution structures of CTX V with that of CTX IV reveals that the secondary structural elements in both the toxin isoforms consist of a triple and double-stranded antiparallel beta-sheet domains. Critical examination of the three-dimensional structure of CTX V shows that the residues at the tip of Loop III form a distinct "finger-shaped" projection comprising of nonpolar residues. The occurrence of the nonpolar "finger-shaped" projection leads to the formation of a prominent cleft between the residues located at the tip of Loops II and III. Interestingly, the occurrence of a backbone hydrogen bonding (Val27CO to Leu48NH) in CTX IV is found to distort the "finger-shaped" projection and consequently diminish the cleft formation at the tip of Loops II and III. Comparison of the solution structures and lethal potencies of other cardiotoxin isoforms isolated from the Taiwan cobra (Naja naja atra) venom shows that a strong correlation exists between the lethal potency and occurrence of the nonpolar "finger-shaped" projection at the tip of Loop III. Critical analysis of the structures of the various CTX isoforms from the Taiwan cobra suggest that the degree of exposure of the cationic charge (to the solvent) contributed by the invariant lysine residue at position 44 on the convex side of the CTX molecules could be another crucial factor governing their lethal potency.  相似文献   

17.
Mayer C  Neubert M  Grummt I 《EMBO reports》2008,9(8):774-780
Silencing of ribosomal RNA genes (rDNA) requires binding of the chromatin remodelling complex NoRC to RNA that is complementary to the rDNA promoter. NoRC-associated RNA (pRNA) folds into a conserved stem–loop structure that is required for nucleolar localization and rDNA silencing. Mutations that disrupt the stem–loop structure impair binding of TIP5, the large subunit of NoRC, to pRNA and abolish targeting of NoRC to nucleoli. Binding to pRNA results in a conformational change of TIP5, as shown by enhanced sensitivity of TIP5 towards trypsin digestion. Our results indicate an RNA-dependent mechanism that targets NoRC to chromatin and facilitates the interaction with co-repressors that promote heterochromatin formation and rDNA silencing.  相似文献   

18.
The Anopheles gambiae mosquito is the main vector of malaria transmission in sub-Saharan Africa. We present here a 1.5A crystal structure of AgamOBP1, an odorant binding protein (OBP) from the A. gambiae mosquito. The protein crystallized as a dimer with a unique binding pocket consisting of a continuous tunnel running through both subunits of the dimer and occupied by a PEG molecule. We demonstrate that AgamOBP1 undergoes a pH dependent conformational change that is associated with reduced ligand binding. A predominance of acid-labile hydrogen bonds involving the C-terminal loop suggests a mechanism in which a drop in pH causes C-terminal loop to open, leaving the binding tunnel solvent exposed, thereby lowering binding affinity for ligand. Because proteins from two distantly related insects also undergo a pH dependent conformational change involving the C-terminus that is associated with reduced ligand affinity, our results suggest a common mechanism for OBP activity.  相似文献   

19.
The mechanism by which sweet proteins elicit a response on the T1R2-T1R3 sweet taste receptor is still mostly unknown but has been so far related to the presence of "sweet fingers" on the protein surface able to interact with the same mechanism as that of low molecular mass sweeteners. In the search for the identification of sweet fingers, we have solved the solution structure of G16A MNEI, a structural mutant that shows a reduction of one order of magnitude in sweetness with respect to its parent protein, MNEI, a single-chain monellin. Comparison of the structures of wild-type monellin and its G16A mutant shows that the mutation does not affect the structure of potential glucophores but produces a distortion of the surface owing to the partial relative displacement of elements of secondary structure. These results show conclusively that sweet proteins do not possess a sweet finger and strongly support the hypothesis that the mechanism of interaction of sweet-tasting proteins with the recently identified T1R2-T1R3 GPC receptor is different from that of low molecular mass sweeteners.  相似文献   

20.
Long chain hydroxy acid oxidase (LCHAO) is responsible for the formation of methylguanidine, a toxic compound with elevated serum levels in patients with chronic renal failure. Its isozyme glycolate oxidase (GOX), has a role in the formation of oxalate, which can lead to pathological deposits of calcium oxalate, in particular in the disease primary hyperoxaluria. Inhibitors of these two enzymes may have therapeutic value. These enzymes are the only human members of the family of FMN-dependent l-2-hydroxy acid-oxidizing enzymes, with yeast flavocytochrome b2 (Fcb2) among its well studied members. We screened a chemical library for inhibitors, using in parallel rat LCHAO, human GOX and the Fcb2 flavodehydrogenase domain (FDH). Among the hits was an inhibitor, CCPST, with an IC50 in the micromolar range for all three enzymes. We report here the crystal structure of a complex between this compound and LCHAO at 1.3 Å resolution. In comparison with a lower resolution structure of this enzyme, binding of the inhibitor induces a conformational change in part of the TIM barrel loop 4, as well as protonation of the active site histidine. The CCPST interactions are compared with those it forms with human GOX and those formed by two other inhibitors with human GOX and spinach GOX. These compounds differ from CCPST in having the sulfur replaced with a nitrogen in the five-membered ring as well as different hydrophobic substituents. The possible reason for the ∼100-fold difference in affinity between these two series of inhibitors is discussed. The present results indicate that specificity is an issue in the quest for therapeutic inhibitors of either LCHAO or GOX, but they may give leads for this quest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号