首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a model of early events in signaling by the epidermal growth factor (EGF) receptor (EGFR). The model includes EGF, EGFR, the adapter proteins Grb2 and Shc, and the guanine nucleotide exchange factor Sos, which is activated through EGF-induced formation of EGFR-Grb2-Sos and EGFR-Shc-Grb2-Sos assemblies at the plasma membrane. The protein interactions involved in signaling can potentially generate a diversity of protein complexes and phosphoforms; however, this diversity has been largely ignored in models of EGFR signaling. Here, we develop a model that accounts more fully for potential molecular diversity by specifying rules for protein interactions and then using these rules to generate a reaction network that includes all chemical species and reactions implied by the protein interactions. We obtain a model that predicts the dynamics of 356 molecular species, which are connected through 3749 unidirectional reactions. This network model is compared with a previously developed model that includes only 18 chemical species but incorporates the same scope of protein interactions. The predictions of this model are reproduced by the network model, which also yields new predictions. For example, the network model predicts distinct temporal patterns of autophosphorylation for different tyrosine residues of EGFR. A comparison of the two models suggests experiments that could lead to mechanistic insights about competition among adapter proteins for EGFR binding sites and the role of EGFR monomers in signal transduction.  相似文献   

2.
3.
Epidermal growth factor (EGF) receptor (EGFR) signal transduction is regulated by endocytosis where many Rab proteins play an important role in the determination of the receptor recycle or degradation. In an effort to better understand how EGF signaling is regulated, we examined the role of Rab21 in regulation of the degradation and signal transduction of the EGFR. Using a transient expression protocol in HEK293T and HeLa cells, we found that Rab21 enhanced the degradation of EGFR through accelerating its internalization in both EGF-independent and EGF-dependent manners. We further demonstrated that Rab21 interacted with EGFR by immunoprecipitation experiments. Interestingly, we observed that overexpression of Rab21 attenuated EGF-mediated mitogen-activated protein kinase (MAPK) signaling by inducing EGFR degradation. Taken together, these data suggest that Rab21 plays a negative role in the EGF-mediated MAPK signaling pathway.  相似文献   

4.
Aydar E  Palmer CP  Klyachko VA  Jackson MB 《Neuron》2002,34(3):399-410
The sigma receptor is a novel protein that mediates the modulation of ion channels by psychotropic drugs through a unique transduction mechanism depending neither on G proteins nor protein phosphorylation. The present study investigated sigma receptor signal transduction by reconstituting responses in Xenopus oocytes. Sigma receptors modulated voltage-gated K+ channels (Kv1.4 or Kv1.5) in different ways in the presence and absence of ligands. Association between Kv1.4 channels and sigma receptors was demonstrated by coimmunoprecipitation. These results indicate a novel mechanism of signal transduction dependent on protein-protein interactions. Domain accessibility experiments suggested a structure for the sigma receptor with two cytoplasmic termini and two membrane-spanning segments. The ligand-independent effects on channels suggest that sigma receptors serve as auxiliary subunits to voltage-gated K+ channels with distinct functional interactions, depending on the presence or absence of ligand.  相似文献   

5.
The epidermal growth factor receptor (EGFR) and HER2 are two important tyrosine kinases that play crucial roles in signal transduction pathways that regulate numerous cellular functions including proliferation, differentiation, migration, and angiogenesis. In the past 20?years, many proteomic methods have emerged as powerful methods to evaluate proteins in biological processes and human disease states. Among them, activity-based protein profiling (ABPP) is one useful approach for the functional analysis of proteins. In this study, a novel photoaffinity probe 11 was designed and synthesised to assess the target profiling of the reactive group in the photoaffinity probe 11. Biological evaluation was performed, and the results showed that the novel photoaffinity probe binds to EGFR and HER2 proteins and it hits targets by the reactive group.  相似文献   

6.
Endocytosis of signaling receptors, such as epidermal growth factor receptor (EGFR), tightly controls the signal transduction process triggered by ligand activation of these receptors. To identify new regulators of the endocytic trafficking of EGFR an RNA interference screen was performed for genes involved in ubiquitin conjugation and down-regulation of EGFR. The screen revealed that small interfering RNAs (siRNAs) that target the conserved ubiquitin-binding domain Uev1 increased down-regulation of EGFR. Since these siRNAs simultaneously targeted multiple genes containing a Uev1 domain, we analyzed the role of these gene products by overexpressing individual Uev1-related proteins. This analysis revealed that overexpression of Uev1A (UBE2V1) has no effect on the degradation of EGFR:EGF complexes. In contrast, overexpression of Uev1B (TMEM189-UBE2V1 isoform 2) slowed the degradation of EGF:receptor complexes. The Uev1B protein was found to strongly colocalize and associate with ubiquitin and Hrs in endosomes. Moreover, overexpression of Uev1B abrogated the ability of Hrs to colocalize with EGFR. The B-domain of Uev1B, and not the UEV-domain, was mainly responsible for the observed phenotypes suggesting the presence of a novel endosomal targeting sequence within the B-domain. Together, the data show that elevated levels of Uev1B protein in cells lead to decreased efficiency of endosomal sorting by associating with ubiquitinated proteins and Hrs.  相似文献   

7.
The mechanism of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion is still not well understood even though it is thought to be related to the protein kinase C/mitogen-activated protein kinase/AP-1 pathway. Recently, TPA was also found to induce epidermal growth factor receptor (EGFR) activity. Here, we investigated whether the EGFR is a necessary component for TPA-induced signal transduction associated with tumor promotion. We demonstrated that potent inhibitors of the EGFR, PD153035 and AG1478, blocked TPA-induced phosphorylation of extracellular signal-regulated kinases (ERKs), AP-1 activity, and cell transformation. Egfr gene deficiency blocked TPA-induced ERK activity and AP-1 binding activity. The blocking of the ectodomain of the EGFR by a monoclonal antibody depressed TPA-induced ERK activity and AP-1 DNA binding activity. The use of a neutralizing antibody for heparin-binding EGF, one of the ligands of EGFR, blocked TPA-induced phosphorylation of ERKs. BB-94, a potent inhibitor of matrix metalloproteinases, which are activators of ectodomain shedding of EGFR ligands, also blocked TPA-induced ERK activity, AP-1 DNA binding, and cell transformation but had no effect on EGF-induced signal transduction. Anti-EGFR, anti-heparin-binding EGF, and BB-94 each blocked TPA-induced EGFR phosphorylation, but only anti-EGFR could block EGF-induced EGFR phosphorylation. Based on these results, we conclude that the EGFR is required for mediating TPA-induced signal transduction. EGFR transactivation induced by TPA is a mechanism by which the EGFR mediates TPA-induced tumor promotion-related signal transduction.  相似文献   

8.
Phosphorylation-dependent protein-protein interactions provide the mechanism for a large number of intracellular signal transduction pathways. One of the goals of signal transduction research is to understand more precisely the nature of these phosphorylation-dependent interactions. Here, we report a novel strategy based on quantitative proteomics that allows for the rapid analysis of peptide-protein interactions with more than one phosphorylation site involved. The phosphorylation of two tyrosine residues, Y342 and Y346, within the linker B region of the protein-tyrosine kinase Syk is important for optimal signaling from the B cell receptor for antigen. We employed four amino-specific, isobaric reagents to differentially label proteins interacting in vitro with four Syk peptides containing none, one, or two phosphates on tyrosine residues Y342 and Y346, respectively. In total, 76 proteins were identified and quantified, 11 of which were dependent on the phosphorylation of individual tyrosine residues. One of the proteins, peroxiredoxin 1, preferably bound to phosphorylated Y346, which was further verified by Western blotting results. Thus, we demonstrate that the use of 4-fold multiplexing allows for relative protein measurements simultaneously for the identification of interacting proteins dependent on the phosphorylation of specific residues.  相似文献   

9.
An in-frame deletion mutation in Epidermal Growth Receptor (EGFR), ΔEGFR is a common and potent oncogene in glioblastoma (GBM), promoting growth and survival of cancer cells. This mutated receptor is ligand independent and constitutively active. Its activity is low in intensity and thought to be qualitatively different from acutely ligand stimulated wild-type receptor implying that the preferred downstream targets of ΔEGFR play a significant role in malignancy. To understand the ΔEGFR signal, we compared it to that of a kinase-inactivated mutant of ΔEGFR and wild-type EGFR with shotgun phosphoproteomics using an electron-transfer dissociation (ETD) enabled ion trap mass spectrometer. We identified and quantified 354 phosphopeptides corresponding to 249 proteins. Among the ΔEGFR-associated phosphorylations were the previously described Gab1, c-Met and Mig-6, and also novel phosphorylations including that of STAT5 on Y694/9. We have confirmed the most prominent phosphorylation events in cultured cells and in murine xenograft models of glioblastoma. Pathway analysis of these proteins suggests a preference for an alternative signal transduction pathway by ΔEGFR compared to wild-type EGFR. This understanding will potentially benefit the search for new therapeutic targets for ΔEGFR expressing tumors.  相似文献   

10.
Phosphotyrosine binding (PTB) domains of the adaptor proteins Doks (downstream of tyrosine kinases) play an important role in regulating signal transduction of cell-surface receptors in cell growth, proliferation and differentiation; however, ligand specificity of the Dok PTB domains has until now remained elusive. In this study, we have investigated the molecular basis of specific association between the Dok1 PTB domain and the tyrosine-phosphorylated EGFR. Using yeast two-hybrid and biochemical binding assays, we show that only the PTB domain from Dok1 but not Dok4 or Dok5 can selectively bind to two known tyrosine phosphorylation sites at Y1086 and Y1148 in EGFR. Our structure-based mutational analyses define the molecular determinants for the two distinct Dok1 PTB domain/EGFR interactions and provide the structural understanding of the specific interactions between EGFR and PTB domains in the divergent Dok homologues.  相似文献   

11.
The epidermal growth factor receptor, EGFR, has been implicated in cell transformation in both mammalian and avian species. The v-ErbB oncoprotein is an oncogenic form of the chicken EGFR. The tyrosine kinase activity of this oncoprotein is required for transformation, but no transformation-specific cellular substrates have been described to date. Recently activation of the ras signal transduction pathway by the EGFR has been shown to involve the Shc and Grb2 proteins. In this communication, we demonstrate that the Shc proteins are phosphorylated on tyrosine residues and are complexed with Grb2 and the chicken EGFR following ligand activation of this receptor. In fibroblasts and erythroid cells transformed by the avian erythroblastosis virus (AEV) strains H and ES4, the Shc proteins are found to be constitutively phosphorylated on tyrosine residues. The tyrosine-phosphorylated forms of the AEV strain H v-ErbB protein are found in a complex with Shc and Grb2, but the Shc proteins do not bind to the AEV strain ES4 v-ErbB protein. Mutant forms of the v-ErbB protein (in which several of the tyrosines that become autophosphorylated have been deleted by truncation) are unable to transform erythroid cells but can still transform fibroblasts. Analysis of cells transformed by one of these mutants revealed that the truncated v-ErbB protein could no longer bind to either Shc or Grb2, but this oncoprotein still gave rise to tyrosine-phosphorylated Shc proteins that complexed with Grb2 and led to activation of mitogen-activated protein (MAP) kinase. The results suggest that stable binding of Grb2 and Shc to the v-ErbB protein is not necessary to activate this signal transduction pathway and assuming that the mutant activate MAP kinase in erythroid cells in a manner similar to that of fibroblasts, that activation of this pathway is not sufficient to transform erythroid cells.  相似文献   

12.
The non-receptor tyrosine kinase Src and receptor tyrosine kinase epidermal growth factor receptor (EGFR/ErbB1) have been established as collaborators in cellular signaling and their combined dysregulation plays key roles in human cancers, including breast cancer. In part due to the complexity of the biochemical network associated with the regulation of these proteins as well as their cellular functions, the role of Src in EGFR regulation remains unclear. Herein we present a new comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. This model, constructed manually from published biochemical literature, consists of 245 nodes representing proteins and their post-translational modifications sites, and over 1,000 biochemical interactions. Using computer simulations of the model, we find it is able to reproduce a number of cellular phenomena. Furthermore, the model predicts that overexpression of Src results in increased endocytosis of EGFR in the absence/low amount of the epidermal growth factor (EGF). Our subsequent laboratory experiments also suggest increased internalization of EGFR upon Src overexpression under EGF-deprived conditions, further supporting this model-generated hypothesis.  相似文献   

13.
G protein-coupled receptors are usually thought to act as monomer receptors that bind ligand and then interact with G proteins to initiate signal transduction. In this study we report an intracellular peripheral membrane protein named the calcitonin gene-related peptide (CGRP)-receptor component protein (RCP) required for signal transduction at the G protein-coupled receptor for adrenomedullin. Cell lines were made that expressed an antisense construct of the RCP cDNA, and in these cells diminished RCP expression correlated with loss of adrenomedullin signal transduction. In contrast, loss of RCP did not diminish receptor density or affinity, therefore RCP does not appear to act as a chaperone protein. Instead, RCP represents a novel class of protein required to couple the adrenomedullin receptor to the cellular signal transduction pathway. A candidate adrenomedullin receptor named the calcitonin receptor-like receptor (CRLR) has been described, which forms high affinity adrenomedullin receptors when co-expressed with the accessory protein receptor-activity modifying protein 2 (RAMP2). RCP co-immunoprecipitated with CRLR and RAMP2, indicating that a functional adrenomedullin receptor is composed of at least three proteins: the ligand binding protein (CRLR), an accessory protein (RAMP2), and a coupling protein for signal transduction (RCP).  相似文献   

14.
Dimerization of the epidermal growth factor receptor (EGFR) is crucial for initiating signal transduction. We employed raster image correlation spectroscopy to continuously monitor the EGFR monomer-dimer equilibrium in living cells. EGFR dimer formation upon addition of EGF showed oscillatory behavior with a periodicity of about 2.5 min, suggesting the presence of a negative feedback loop to monomerize the receptor. We demonstrated that monomerization of EGFR relies on phospholipase Cγ, protein kinase C, and protein kinase D (PKD), while being independent of Ca2+ signaling and endocytosis. Phosphorylation of the juxtamembrane threonine residues of EGFR (T654/T669) by PKD was identified as the factor that shifts the monomer-dimer equilibrium of ligand bound EGFR towards the monomeric state. The dimerization state of the receptor correlated with the activity of an extracellular signal-regulated kinase, downstream of the EGFR. Based on these observations, we propose a novel, negative feedback mechanism that regulates EGFR signaling via receptor monomerization.  相似文献   

15.
The EF-hand family of calcium-binding proteins regulates cellular signal transduction events via calcium-dependent interactions with target proteins. Here, we show that the COOH-terminal tail of the leech homolog of protein phosphatase 4 regulatory subunit 2 (PP4-R2) interacts with the small neuronal EF-hand calcium-binding protein, Calsensin, in a calcium-dependent manner. Using two-dimensional NMR spectroscopy and chemical shift perturbations we have identified and mapped the residues of Calsensin that form a binding surface for PP4-R2. We show that the binding groove is formed primarily of discontinuous hydrophobic residues located in helix 1, the hinge region, and helix 4 of the unicornate-type four helix structure of Calsensin. The findings suggest the possibility that calcium-dependent modulation of phosphatase complexes through interactions with small calcium-binding proteins may be a general mechanism for regulation of signal transduction pathways.  相似文献   

16.
Key to the transduction of signals from the environment to the cell nucleus are enzymes that post-translationally modify proteins. Modifications such as protein phosphorylation have long been known to regulate protein interactions, stability, and localization, as well as enzyme activity. Recent investigations into how cells respond to varying oxygen levels have identified a new mechanism for regulating signal transduction involving the post-translational hydroxylation of proline. The enzymes that catalyze this reaction comprise a novel family of prolyl hydroxylases, which include a growth-factor-responsive and cell-death-related protein (SM-20) in mammals, and a protein (EGL-9) in C. elegans important for normal egg laying.  相似文献   

17.
Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein-protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein-protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein-protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein-protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein-protein interactions in a dynamic context- and phosphorylation site-specific manner.  相似文献   

18.
Mass spectrometry-based proteomics can reveal protein-protein interactions on a large scale, but it has been difficult to separate background binding from functionally important interactions and still preserve weak binders. To investigate the epidermal growth factor receptor (EGFR) pathway, we employ stable isotopic amino acids in cell culture (SILAC) to differentially label proteins in EGF-stimulated versus unstimulated cells. Combined cell lysates were affinity-purified over the SH2 domain of the adapter protein Grb2 (GST-SH2 fusion protein) that specifically binds phosphorylated EGFR and Src homologous and collagen (Shc) protein. We identified 228 proteins, of which 28 were selectively enriched upon stimulation. EGFR and Shc, which interact directly with the bait, had large differential ratios. Many signaling molecules specifically formed complexes with the activated EGFR-Shc, as did plectin, epiplakin, cytokeratin networks, histone H3, the glycosylphosphatidylinositol (GPI)-anchored molecule CD59, and two novel proteins. SILAC combined with modification-based affinity purification is a useful approach to detect specific and functional protein-protein interactions.  相似文献   

19.
4-hydroxynonenal (HNE), an aldehyde product of membrane lipid peroxidation, has been suggested to mediate a number of oxidative stress-linked pathological events in humans, including cellular growth inhibition and apoptosis induction. Because HNE is potentially reactive to a number of both cell surface and intracellular proteins bearing sulfhydryl, amino and imidazole groups, it seems that there are multiple signal transduction cascades. Here we briefly review the HNE-triggered signal transduction cascades that lead to suppression of cellular functions and to cell death, based mainly on our own recent study results.We first showed that formation of HNE-cell surface protein adducts, which mimicked ligand-cell surface receptor binding, induced activation of receptor-type protein tyrosine kinases such as epithelial growth factor receptor (EGFR) and that this caused growth inhibition through a cascade of activation of EGFR, Shc and ERK. Next, we showed that HNE-mediated scavenging of cellular glutathione led to activation of caspases and to DNA fragmentation through a Fas-independent and mitochondria-linked pro-apoptotic signal pathway. More recently, we have obtained evidence that the HNE-triggered signal cascade for caspase activation encounters complex positive feedback regulatory mechanisms that are linked to the inhibition of anti-apoptotic signals and are dependent on caspase activity. Underlying multiple regulatory mechanisms, including mechanisms of activation of Akt-dephosphorylating PP2A activity, activities of protein tyrosine kinases have been shown to be biphasically controlled by HNE. In addition, we have obtained results suggesting that HNE inhibits phosphorylation of IkappaB, possibly by targeting some elements upstream of IkappaB, which might downregulate the NF-kappaB-mediated cellular responses, including serum deprivation-induced iNOS expression and generation of anti-apoptotic signals.These results suggest that HNE reacts with multiple cell surface and intracellular sites for triggering a network of signal transduction that is ultimately focused on suppression of cellular functions.  相似文献   

20.
Whereas poly-ubiquitination targets protein substrates for proteasomal degradation, mono-ubiquitination is known to regulate protein trafficking in the endosomal system and to target cargo proteins for lysosomal degradation. The role of the de-ubiquitinating enzymes AMSH and UBPY in endosomal trafficking of cargo proteins such as the epidermal growth factor receptor (EGFR) has only very recently been the subject of study and is already a matter of debate. Although one report (Mizuno, E., Iura, T., Mukai, A., Yoshimori, T., Kitamura, N., and Komada, M. (2005) Mol. Biol. Cell 16, 5163-5174) concludes that UBPY negatively regulates EGFR degradation by de-ubiquitinating the EGFR on endosomes, another report (Row, P. E., Prior, I. A., McCullough, J., Clague, M. J., and Urbe, S. (2006) J. Biol. Chem. 281, 12618-12624) concludes that UBPY-mediated EGFR de-ubiquitination is essential for EGFR degradation. Here, we demonstrate that Usp8/UBPY, the mammalian ortholog of budding yeast Ubp4/Doa4, constitutively co-precipitates in a bivalent manner with the EGFR. Moreover, UBPY is a substrate for Src-family tyrosine kinases that are activated after ligand-induced EGFR activation. Using overexpression of three different recombinant dominant negative UBPY mutants (UBPY C748A mutant, UBPY 1-505, and UBPY 640-1080) in NIH3T3 and HEK293 cells, we demonstrate that UBPY affects both constitutive and ligand-induced (i) EGFR ubiquitination, (ii) EGFR expression levels, and (iii) the appearance of intermediate EGFR degradation products as well as (iv) downstream mitogen-activated protein kinase signal transduction. Our findings provide further evidence in favor of the model that UBPY-mediated EGFR de-ubiquitination promotes EGFR degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号