首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structure and function of y chromosomal DNA   总被引:2,自引:0,他引:2  
  相似文献   

2.
3.
4.
5.
6.
The loops which transcribe 5S ribosomal RNA in lampbrush chromosomes of the newt, Notophthalmus (Triturus) viridescens, were identified by hybridizing purified 5S DNA to nascent 5S RNA in situ. The genes which code for 5S RNA were found near the centromeres of chromosomes 1, 2, 6, and 7 by hybridizing iodinated 5S RNA to denatured lampbrush and mitotic chromosomes in situ. These genes and their intervening spacer DNA were isolated from Xenopus laevis using sequential silver-cesium sulfate equilibrium centrifugations. This purified 5S DNA was iodinated and hybridized to non-denatured lampbrush chromosomes in situ, where it bound to nascent 5S RNA on loops at the base of the centromeres of chromosomes 1, 2, 6, and 7. The number of 5S genes present in the haploid chromosome complement of N. viridescens was determined. — The 5S loops were chosen for study, since (1) the synthesis of 5S RNA has been demonstrated during the lampbrush stage, (2) both 5S RNA and 5S DNA could be isolated in pure form, and (3) the localization of the repetitive 5S genes could be verified by conventional in situ hybridization procedures. These methods may be applicable to the identification of other loops, leading to a better understanding of lampbrush chromosome function.  相似文献   

7.
Genes controlling chromosome activity   总被引:3,自引:0,他引:3  
Normal propagation of Y chromosome lampbrush loops was used as a screening tool in order to recover X-linked mutations controling Y chromosome activation. The nature of the most extreme mutationthus recovered, sterile (1) XL2, is described. It is a recessive gene mutation, readily mapped 2 cross over units distally to white. The mutation exerts its sterilizing effect by blocking normal unfolding of all Y lampbrush loops, but does not affect the unique shape of each diminutive loop. The degree to which a loop forming site is developed is partially temperature sensitive. It is independent however, on its map location or the dose of homologous as well as heterologous sites. It was provisionally concluded therefore that site response to the XL2 effect is a stage specific and not a quantitative one. The possible ways by which non homologous genes control Y chromosome activity are discussed.  相似文献   

8.
9.
Summary Deficiencies of the Y chromosome of Drosophila hydei including sites which develop lampbrush loops invariably cause sterility of males. Suppression of loop unfolding in one or more sites equally results in similar morphogenetic defects of spermiogenesis. A variegated type repression of lampbrush loop unfolding observed during the spermatocyte stage results in varying morphogenetic effects on spermiogenesis. This demonstrates the existence of causal relationships between the active phase of Y chromosomal factors in spermatocytes and the differentiation processes in spermatids.In some translocated Y fragments the mode of unfolding of a particular pair of lampbrush loops may be permanently changed. As a result, lampbrush loops of a mutant phenotype are developed. Some alterations of this type are correlated with functional alterations resulting in defective spermiogenesis.Three different fragments of the Y chromosome in which lampbrush loop formation was repressed have been tested for possible reversions of loop suppression by means of X irradiations. In none of the three cases reversion has been detected among two thousand tested chromosomes.To the memory of Karl-Heinz Bier.  相似文献   

10.
11.
The nucleolus organizer locus of Xenopus laevis lampbrush chromosomes was identified by in situ hybridization of a 3H-labelled probe complementary to 18S + 28S rDNA. The nucleolus organizer is an axial granule on chromosome III that lies four-fifths the way down this chromosome reading from its larger (left) telomere, just within an exploded region that extends to its right end, where the lateral loops are exceptionally long. By in situ hybridization of 3H-labelled oocyte and somatic 5S spacer cRNA probes to similarly RNase-treated and denatured lampbrush chromosomes, the multiple sites of oocyte and somatic 5S gene families were identified. Oocyte 5S genes lie at the larger telomeres of the 15 chromosomes that possess these structures; that is, all but chromosomes X, XVII and XVIII. There are a further four sites, all peripheral, and in three of these, on chromosomes VII, X and XI, the sequences lie on lateral loops that are resolvable with the light microscope. By contrast all of the somatic 5S gene clusters occupy peripheral sites. There are two sites on chromosome III, one of which may be shared with oocyte 5S sequences; one on chromosome VII, which is very likely shared with oocyte 5S sequences; one terminal site on chromosome X; one site on chromosome XI that lies on a single pair of long loops which are inserted in a conspicuous and recognizable axial granule, loops which certainly carry oocyte 5S sequences too; two nearly terminal sites alongside the larger telomeres on chromosomes XII and XIV; and single interstitial sites on all three of the sphere-bearing chromosomes, VIII, IX and XVI. We suggest that 5S sequences on resolvable loops are transcribed by readthrough from upstream promoters, probably by polymerase II.  相似文献   

12.
13.
14.
Summary The function of pairs of translocated fragments of the Y chromosome of Drosophila hydei was tested. As the pairs of fragments together had a complete set of Y chromosomal sites, complementation of their function could be predicted according to results of earlier experiments. In contrast to the earlier experiments the development of lampbrush loops during the spermatocyte stage was blocked in one partner of each combined pair. As a consequence, no complementary effect on spermiogenesis is detectable. The results indicate that the formation of lampbrush loops by seven sites in the Y chromosome is a necessary prerequisite for the normal progress of spermiogenesis. This can be considered as further support of the view that the lampbrush loops in spermatocyte nuclei of Drosophila are phenotypic manifestations of the activity of male fertility factors.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

15.
16.
We microdissected a Y chromosomal lampbrush loop pair from primary spermatocyte nuclei of Drosophila hydei and cloned the DNA directly at the microscale. Four of the 12 recombinant DNA clones recovered display in situ hybridization to mitotic metaphase Y chromosomes, preferentially in the chromosomal region identified as the origin of the lampbrush loop pair. All clones, however, also hybridize to autosomal and X chromosomal loci in polytene chromosomes. Y chromosomal DNA sequences of D. hydei again prove to be members of different families of repeated sequences distributed throughout the genome. These microcloning experiments, which were carried out under very unfavourable experimental conditions (low DNA content of the lampbrush loops in the presence of large amounts of RNA) prove that almost any chromosomal structure detected by light microscopy is directly accessible to molecular cloning experiments by micromethods.  相似文献   

17.
Orilio Leoncini 《Chromosoma》1977,63(4):329-357
Mutations were induced in the Y chromosomal fertility genes of Drosophila hydei by EMS treatment of adult males. Four types of mutants were observed: 1. Sterile mutants without detectable cytological changes in Y chromosomal lampbrush loops. 2. Sterile males with morphologically changed loops. 3. Sterile males where one or several Y chromosomal loops are missing in the spermatocytes. 4. Mutants which are temperature-sensitive for sterility, development of loops or altered loop morphology. In this paper four Y mutants are described which are temperature-sensitive as regards fertility but which show unchanged lampbrush loops. They can be mapped in four different complementation groups. Two of those occur probably in regions of the Y chromosome without cytologically detectable lampbrush loops. All mutations are found in the distal half of the long arm. The temperature-sensitive period occurs during the primary spermatocyte stage and in early spermatid development while the manifestation of the effect occurs postmeiotically. The mutants are further characterized with respect to changes in the ultrastructure of the sperm at the restrictive temperature.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号