首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Measurement of tissue/cell DNA adducts represents a suitable monitor of carcinogen exposure because the majority of chemical mutagens/carcinogens react with DNA, forming covalent adducts, a key event in the initiation of chemical carcinogenesis. Investigations of DNA-adduct formation in vivo in white blood cells (WBC) versus target tissues, i.e. internal organs for most carcinogens, is expected to yield useful information about the suitability of WBC for biomonitoring and risk assessment. For this purpose, female ICR mice were given 0.4 mmole/kg benzo[a]pyrene (BP), 0.045 mmole/kg dibenzo[c,g]carbazole (DBC) or 2.47 mmole/kg safrole by oral gavage or 4 daily doses (equivalent to 3 cigarettes) of cigarette-smoke condensate (CSC) by topical application. At 24 h after dosing, DNA adducts were detected by a nuclease P1-enhanced 32P-postlabeling assay [M.V. Reddy and K. Randerath, Carcinogenesis, 7 (1986) 1543] in WBC and internal tissues treated with individual carcinogens, while CSC treatment elicited aromatic adducts in most tissues but not in WBC. Adduct patterns of WBC DNA were qualitatively similar to those of internal organs, but adduct amounts varied. BP, a systemic carcinogen, bound nearly as much to WBC DNA as to target-tissue DNA samples; whereas the liver carcinogens, DBC and safrole, bound to WBC DNA considerably less (22- and 51-fold, respectively) compared with liver DNA. The number of adducts in 10(7) nucleotides of WBC, liver, lung, kidney and spleen DNA, respectively, were: 2, 5, 3, 2 and 3 with BP; 6, 131, 6, 14 and 4 with DBC; 5, 238, 3, 5 and 0.6 with safrole. For CSC, these values were 0, 1 and 0.02 in WBC, lung and spleen, respectively. Our results show that carcinogen binding to WBC DNA does not reflect binding to target-tissue DNA in a quantitative sense for the carcinogens studied except for BP, and that WBC are not suitable surrogates for monitoring CSC exposure by DNA-adduct measurement after topical application. The CSC data in mice was consistent with the previous findings in humans that smokers' tissues but not WBC show smoking-related bulky/aromatic DNA adducts, as measured by 32P-postlabeling.  相似文献   

3.
4.
The cytoplasmic DNA-binding proteins of Physarum polycephalum were recovered by chromatography of cytosol extracts on sequential columns of native and denatured calf thymus DNA-cellulose. 5.4% of the total cytosol protein was bound to native DNA-cellulose, while 4.4% was bound to denatured DNA-cellulose. Stepwise salt gradient elution of the columns separated the DNA-binding proteins into 9 fractions which were analysed by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Several hundred discrete polypeptide bands were identified, with many more high molecular weight polypeptides (greater than 100 000 D) binding to native than to denatured DNA. Continuous in vivo labelling of microplasmodia in KH2[32P]O4 and [3H]leucine was used to determine which of the DNA-binding proteins were phosphorylated, and to approximate their phosphorus content. About 30–40 phosphoproteins were resolved among the DNA-binding proteins. Most phosphoproteins contained less than 3 phosphates per polypeptide, but a small number of low molecular weight phosphoproteins (less than 50 000 D) contained from 5 to 10 phosphates per polypeptide. The majority of high molecular weight DNA-binding phosphoproteins bound to native DNA and were eluted with 0.25 M NaCl. As a group, the DNA-binding proteins were enriched in protein-bound phosphorus when compared with the cytosol proteins which did not bind to DNA. The phosphorus content of the cytoplasmic DNA-binding proteins was similar to that of the acidic nuclear proteins.  相似文献   

5.
Cytoplasmic DNA-binding proteins   总被引:1,自引:0,他引:1  
Cytoplasmic DNA-binding proteins were isolated from Chinese hamster liver, kidney and tissue culture cells by DNA-polyacrylamide chromatography. With homologous Chinese hamster DNA, and with calf thymus DNA, 1.4% of the proteins were bound to the column. With single-stranded DNA and with heterologous Micrococcus lysodeikticus DNA there was only 0.3% binding, suggesting the proteins preferentially bind to double-stranded DNA and show some sequence specificity. By a nitrocellulose filter assay the bound proteins had at least a 4- to 7-fold greater affinity for DNA than bulk cytoplasmic protein. SDS gel electrophoresis showed that specific proteins were being markedly concentrated by the column and it was primarily the high molecular weight proteins of 65 000 D and over which showed sequence specificity. Some proteins appeared in common with different organs, others were unique. These studies thus define a group of high molecular weight, cytoplasmic proteins which bind to native DNA with a degree of sequence specificity. Their possible relationship to gene regulation is discussed.  相似文献   

6.
Metabolic activation and DNA binding of aflatoxin B1 (AFB1), N-nitrosodimethylamine (DMN) and benzo[a]pyrene (B[a]P) were compared in human, rat and mouse hepatocytes and human pulmonary alveolar macrophages (PAM). The degree of carcinogen activation by hepatocytes and PAM was measured by cell-mediated mutagenesis assays in which co-cultivated Chinese hamster V79 cells were used to monitor mutagenic metabolites. Hepatocytes from human, mouse and rat metabolized DMN and released the active metabolites to induce either ouabain- or 6-thioguanine-resistant mutation. The mutation frequencies mediated by hepatocytes of the 3 animal species were approximately 3-9 mutants/10(5) survivors at a concentration of 0.2 mM DMN. The variations of radioactivity bound to liver cell DNA were relatively small in cultured mouse, rat, and human hepatocytes exposed to 14C label DMN (0.5 mM) and the binding values were in a range of 6-12 X 10(3) pmoles/mg DNA. However, rat hepatocytes were at least 10-fold more effective than either human or mouse hepatocytes in generating mutagenic metabolites of AFB1 and also had a much higher AFB1 metabolite DNA-binding value. The AFB1 DNA-binding levels were 4.1, 12-27 (range), 120 pmoles/mg DNA respectively in mouse, human, and rat liver cells following AFB1 (3.3 microM) exposure for 20 h. Hepatocytes from the 3 animal species were unable to mediate mutation in the presence of 4 microM B[a]P; PAM activated B[a]P and effectively mediated mutation in the co-cultivated V79 cells. In contrast to results with hepatocytes, PAM failed to generate enough mutagenic metabolites of AFB1 (3.3 microM) and the mediation of mutations was seen only at very high concentration of DMN (80 mM). The genotoxic effects of the 3 carcinogens on hepatocytes from different species in vitro were in agreement with the in vivo animal experiments in that mice are relatively resistant to AFB1 carcinogenesis whereas rats are sensitive; B[a]P is not effective as a complete liver carcinogen in adult rat and mouse whereas DMN induces liver cancer.  相似文献   

7.
Gu GM  Wang JK 《遗传》2012,34(8):950-968
基因差异表达是生物发育和对刺激作出应答的分子基础,转录因子在这种基因差异表达中发挥着重要的调控作用。因此,要弄清楚转录因子调控基因差异表达的机理,就必须鉴定出它们全部的靶基因并构建其操纵的转录调控网络。对基因组DNA的序列特异性结合是转录因子调控基因转录的关键环节,因此,要鉴定转录因子的靶基因,就必须从它们与DNA相互作用的分子水平,鉴定它们能够识别并结合的全部DNA序列,即转录因子DNA结合谱。近年来随着DNA微阵列芯片和高通量DNA测序技术的产生和快速发展,出现了建立转录因子体内及体外DNA结合谱的一系列革命性的新技术,对该领域的研究带来重大影响。这些新技术主要包括建立转录因子体内DNA结合谱的染色质免疫沉淀-芯片技术(ChIP-chip)和染色质免疫沉淀-测序技术(ChIP-Seq),以及建立转录因子体外DNA结合谱的双链DNA微阵列芯片技术(dsDNA microarray)、指数富集配体系统进化-系列分析基因表达技术(SELEX-SAGE)、结合-n-测序技术(Bind-n-Seq)、多重大规模并行SELEX技术(MMP-SELEX)、凝胶迁移实验-测序技术(EMSA-Seq)和高通量测序-荧光配体互作图谱分析技术(HiTS-FLIP)。文章将对这些新技术做一综述。  相似文献   

8.
Acid-soluble proteins were isolated from liver and spleen mitochondria and their ability to form complexes with DNA was investigated. According to electrophoresis data, acid-soluble proteins include about 20 polypeptides ranging in the molecular mass from 10 to 120 kDa. It was found that acid-soluble proteins form stable DNA-protein complexes at a physiological NaCl concentration. Different polypeptides possess different degrees of DNA affinity. There is no significant difference between DNA-binding proteins of mitochondria from liver and those from spleen as to their ability to form complexes with mtDNA and nDNA. In the presence of 5 microg of DNA most polypeptides were bound to DNA, and further increase in DNA amount affected little the binding of proteins to DNA. There was no distinct difference in DNA-protein complex formation of liver mitochondrial acid-soluble proteins with nDNA or mtDNA. Also, it was detected that with these mitochondrial acid-soluble proteins, proteases that specifically cleave these proteins are associated. It was shown for the first time that these proteases are activated by DNA. DNA-binding proteins including DNA-activated mitochondrial proteases are likely to participate in the regulation of the structural organization and functional activity of mitochondrial DNA.  相似文献   

9.
The binding of a chemical carcinogen to components of hepatic chromatin in male rats was examined. After a single injection of N-[3H]hydroxy-2-acetylaminofluorene ([3H]OH-AAF) covalent binding to chromatin RNA, protein, and DNA occurs. The amount of carcinogen bound to RNA was approximately 5 times greater than to DNA, and 10 times that of the protein. However, loss of carcinogen from RNA with time was rapid, whereas a persistent binding to DNA equal to 15% of the initial values was observed. To localize the initial and persistent DNA-bound carcinogen, the genome was fractionated using two different chromatin fractionation procedures. The procedures used yielded 3 chromatin fractions based on physical characteristics, degree of association with nascent RNA and in vitro template capacity. Based on those parameters, these chromatin fractions have been tentatively classified as template expressed euchromatin, a repressed heterochromatin, and a highly condensed pelleted heterochromatin. With both the glycerol gradient chromatin fractionation procedure and the selective MgCl2 chromatin precipitation procedure, the initial (2 h) binding of carcinogen was greatest on the euchromatin DNA. Loss of carcinogen from the DNA, however, was also significantly faster from the euchromatin when compared to the heterochromatin and the pelleted heterochromatin. By 10 days after a single injection of the carcinogen, the largest amount of bound fluorene residues was located on the pelleted heterochromatin DNA, an apparently repressed portion of the genome, while less than 5% of the initial values were found on either the eu- or heterochromatin. When the rats were fed a 2-acetylaminofluorene-containing diet, loss of carcinogen from the pelleted heterochromatin DNA was enhanced, while loss from the euchromatin DNA was reduced. The covalent nature of the carcinogen modification of DNA was confirmed by thin-layer chromatography (TLC). These studies also demonstrated 2 separate carcinogen-purine base adducts which were identified as N-(guanin-8-yl)-N-AF and 3-(guanin-N2-yl)-N-AAF based on either co-chromatography with an authentic standard or on published Rf-values, respectively. The pelleted heterochromatin DNA had a significantly greater proportion of the 3-guanine-N2 adduct when compared to DNA from either the eu- or heterochromatin.  相似文献   

10.
A nuclear protein isolated from human placenta, methylated DNA-binding protein (MDBP), binds selectively to DNA enriched in 5-methylcytosine. We now demonstrate that MDBP is a sequence-specific, as well as methylation-specific, DNA-binding protein. From ten restriction fragments of pBR322 DNA methylated with human DNA methyltransferase, one was bound to MDBP very much more strongly than any of the others. For this preferential binding to MDBP, the DNA had to be methylated. By a DNase I protection experiment (DNase I footprinting), a 22-base sequence within this methylated restriction fragment was shown to be specifically protected by MDBP. The sequence-specificity of MDBP coupled with its dependence on DNA methylation suggests that this is one of the proteins which modulates important functions of human DNA methylation in vivo.  相似文献   

11.
The covalent binding of reactive metabolites of the carcinogen N-hydroxy-2-acetylaminofluorene to DNA and protein in isolated, intact rat liver nuclei was studied. The chemically synthesized 2-acetylaminofluorene-N-sulfate became covalently bound to DNA and protein to form adducts, 50% to 60% of which retained the N-acetyl group. Glutathione decreased the covalent binding of acetylated adducts to DNA by 18% and to protein by 50%. Methionine was more effective; it decreased DNA binding by 52% and protein binding by 79%. N-Hydroxy-2-acetylaminofluorene was deacetylated by the nuclear preparation. Almost exclusively, deacetylated 2-aminofluorene adducts to DNA and protein were formed. Glutathione decreased the covalent binding of deacetylated adducts to DNA by only 14%. Protein binding, however, was decreased by 57%. Methionine had no effect on the formation of these adducts to DNA and protein. Formation of 2-aminofluorene-glutathione conjugates was reduced by ascorbic acid by 65%. Covalent binding of deacetylated adducts to DNA and protein, however, was not decreased by ascorbic acid. These data suggest that "harder" nucleophiles like methionine can be used to protect macromolecules in vivo from damage by "hard" electrophiles such as those generated from the reactive 2-acetylaminofluorene-N-sulfate. However, such nucleophiles seem not to be effective with N-hydroxylamines, such as N-hydroxy-2-aminofluorene, formed by deacetylation of N-hydroxy-2-acetylaminofluorene.  相似文献   

12.
A series of benzothiazole and benzoxazole linked pyrrolobenzodiazepine conjugates attached through different alkane or alkylamide spacers was prepared. Their anticancer activity, DNA thermal denaturation studies, restriction endonuclease digestion assay and flow cytometric analysis in human melanoma cell line (A375) were investigated. One of the compounds of the series 17d showed significant anticancer activity with promising DNA-binding ability and apoptosis caused G0/G1 phase arrest at sub-micromolar concentrations. To ascertain the binding mode and understand the structural requirement of DNA binding interaction, molecular docking studies using gold program and more rigorous 2 ns molecular dynamic simulations using Molecular Mechanics-Poisson–Boltzman Surface Area (MM-PBSA) approach including the explicit solvent were carried out. Further, the compound 17d was evaluated for in vivo efficacy studies in human colon cancer HT29 xenograft mice.  相似文献   

13.
A topoisomerase I DNA unwinding assay has been used to determine the relative DNA-binding affinities of a model pair of homologous naphthalene diimides. Binding affinity data were corroborated using calorimetric (ITC) and spectrophotometric (titration and T(m)) studies, with substituent size playing a significant role in binding. The assay was also used to investigate the mode of binding adopted by several known DNA-binding agents, including SYBR Green and PicoGreen. Some of the compounds exhibited unexpected binding modes.  相似文献   

14.
The uptake and binding of ring-labelled [-14C]aflatoxin B1 (AFB1) by rat and hamster liver and kidney has been studied, the former species being extremely sensitive to the carcinogenic action of AFB, whereas the latter is resistant. In contrast to an earlier report (Lijinsky et al, Cancer Res., 30 (1970) 2280-2283, binding of the carcinogen to nucleic acids was far greater than that to protein. Rat liver DNA bound ten times and rRNA twenty times more carcinogen than protein. There were also differences in the amount of carcinogen bound to rat liver nucleic acids compared to those of the hamster, the latter species binding lower amounts of the carcinogen. Rat liver DNA bound four times and rRNA ten times as much AFB1 6 h after carcinogen administration whereas liver protein bound AFB1 was similar for the two species. Not only was there a difference in the amount of AFB1 bound but whereas in the rat, liver nucleic acid bound carcinogen decayed with time, no such fall was seen in the hamster, this remaining at a low level throughout the 48-h time period studied. In contrast, reaction of the carcinogen with kidney macromolecules was similar for the two species. The much higher binding of AFB1 to nucleic acids than to protein might account for the potent carcinogenicity of this compound in the rat, particularly since liver protein binding does not differ between a susceptible and a resistant species. A further important factor in determining carcinogenic sensitivity may be the removal of nucleic acid bound radioactivity with time, a possible repair process.  相似文献   

15.
PCBs are complete rodent carcinogens and their potent tumor promoting activity has been reported, but their tumor-initiating activity remains controversial. Macromolecular binding of PCB metabolites has been demonstrated in vitro, but this issue remains unclear in vivo. The purpose of this study was to determine the binding affinity of 4-chlorobiphenyl and 3,3',4,4'-tetrachlorobiphenyl to proteins and DNA in vivo. C57/BL6 female mice were treated intraperitoneally with hepatic enzyme inducers (phenobarbital and beta-naphthoflavone) and then with 14C-labelled polychlorinated biphenyls or benzo[a]pyrene. The short-term distribution of labeled compounds into liver, lungs and kidneys and into different sub-cellular fractions of these tissues was assessed and the DNA and proteins from the 700 x g pellet were further purified to assess covalent binding. All compounds were distributed in low amounts into the liver, kidneys and lungs, with the greatest accumulation in the liver, and the lowest in lungs. In all tissues, test compounds were mostly found in cytosols and organellar pellets (10,000 x g), and lower amounts were present in nuclear pellets (700 x g) and microsomes. In lungs and kidneys, only benzo[a]pyrene showed significant covalent binding to proteins. In the liver, protein binding indices were significant for all compounds (P<0.05), but no significant binding of the test compounds to DNA could be demonstrated with this approach. Our results suggest that at the 24 h time point, all compounds were activated to electrophilic intermediates prone to macromolecular binding. Hepatic proteins apparently act as a sink for PCB-derived electrophiles, thus preventing detectable levels of covalent binding to hepatic DNA or to proteins in less metabolically active tissues.  相似文献   

16.
17.
In vivo interactions of acrylonitrile with macromolecules in rats   总被引:1,自引:0,他引:1  
The irreversible binding of [2,3-14C]acrylonitrile (VCN) to proteins, RNA and DNA of various tissues of male Sprague-Dawley rats after a single oral dose of 46.5 mg/kg (0.5 LD50) has been studied. Proteins were isolated by chloroform-isoamyl alcohol-phenol extraction. RNA and DNA were separated by hydroxyapatite chromatography. Binding of VCN to proteins was extensive and was time dependent. Radioactivity in nucleic acids was registered in the liver and the target organs, stomach and brain. DNA alkylation, which increased by time, was significantly higher in the target organs, brain and stomach (119 and 81 pmol/mg, respectively, at 24 h) than that in the liver. The covalent binding indices for the liver, stomach and brain at 24 h after dosing were, 5.9, 51.9 and 65.3, respectively. These results suggest that VCN is able to act as a multipotent carcinogen by alkylation of DNA in the extrahepatic target tissues, stomach and brain.  相似文献   

18.
The accessibility of NH2 groups in the DNA-binding protein of Pf1 bacteriophage has been investigated by differential chemical modification with the reagent ethyl acetimidate. The DNA-binding surface was mapped by identification of NH2 groups protected from modification when the protein is bound to bacteriophage-Pf1 DNA in the native nucleoprotein complex and when bound to the synthetic oligonucleotide d(GCGTTGCG). The ability of the modified protein to bind to DNA was monitored by fluorescence spectroscopy. Modification of the NH2 groups in the native nucleoprotein complex showed that seven out of the eight lysine residues present, and the N-terminus, were accessible to the reagent, and were not protected by DNA or by adjacent protein subunits. Modification of these residues did not inhibit the ability of the protein to bind DNA. Lysine-25 was identified by peptide mapping as being the major protected residue. Modification of this residue does abolish DNA-binding activity. Chemical modification of the accessible NH2 groups in the complex formed with the octanucleotide effectively abolishes binding to DNA. Peptide mapping established that, in this case, lysine-17 was the major protected residue. The differences observed in protection from acetimidation, and in the ability of the modified protein to bind DNA, indicate that the oligonucleotide mode of binding is not identical with that found in the native nucleoprotein complex with bacteriophage-Pf1 DNA.  相似文献   

19.
Recent studies have shown that Cdc6 is an essential regulator in the formation of DNA replication complexes. However, the biochemical nature of the Cdc6 molecule is still largely unknown. In this report, we present evidence that the Saccharomyces cerevisiae Cdc6 protein is a double-stranded DNA-binding protein. First, we have demonstrated that the purified yeast Cdc6 can bind to double-stranded DNA (dissociation constant approximately 1 x 10(-7) M), not to single-stranded DNA, and that the Cdc6 molecule is a homodimer in its native form. Second, we show that GST-Cdc6 fusion proteins expressed in Escherichia coli bind DNA in an electrophoretic mobility shift assay. Cdc6 antibodies and GST antibodies, but not preimmune serum, induce supershifts of GST-Cdc6 and DNA complexes in these assays, which also showed that GST-Cdc6 binds to various DNA probes without apparent sequence specificity. Third, the minimal requirement for the binding of Cdc6 to DNA has been mapped within its N-terminal 47-amino acid sequence (the NP6 region). This minimal binding domain shows identical DNA-binding properties to those possessed by full-length Cdc6. Fourth, the GST-NP6 protein competes for DNA binding with distamycin A, an antibiotic that chelates DNA within the minor groove of the A+T-rich region. Finally, site-direct mutagenesis studies revealed that the (29)KRKK region of Cdc6 is essential for Cdc6 DNA-binding activity. To further elucidate the function of Cdc6 DNA binding in vivo, we demonstrated that a binding mutant of Cdc6 fails to complement either cdc6-1 temperature-sensitive mutant cells or Deltacdc6 null mutant cells at the nonpermissive temperature. The mutant gene also conferred growth impairments and increased the plasmid loss in its host, indicative of defects in DNA synthesis. Because the mutant defective in DNA binding also fails to stimulate Abf1 ARS1 DNA-binding activity, our results suggest that Cdc6 DNA-binding activity may play a pivotal role in the initiation of DNA replication.  相似文献   

20.
The covalent binding of metabolically activated 1,2-dibromoethane (DBE), a potent carcinogen, to chromatin constituents of forestomach and liver was examined in vitro. Chromatin was prepared from forestomach and liver of B6C3F1 mice and characterized. In order to activate DBE, microsomes and cytosol were isolated from mouse forestomach and liver and incubated with [14C]-DBE in the presence of a NADPH regenerating system. Results demonstrate that DBE bound covalently to the same extent to protein of microsomes and chromatin isolated from forestomach and liver. On the contrary, DBE bound significantly more to chromatin DNA of forestomach or liver than it did to salmon sperm DNA. It appears from these results that the metabolically activated DBE is more reactive to homologous DNA than exogenous DNA. Fractionation of DBE-bound chromatin protein into histone and nonhistone proteins resulted in higher binding of DBE to non-histone than to histone proteins isolated from forestomach and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号