首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of an intrinsic agonist (cAMP) to specific receptors on the cell surface induces transmembrane signals for activation and desensitization (adaptation and down regulation) of adenylate cyclase in the cellular slime mold, Dictyostelium discoideum. It is generally believed that dithiothreitol (DTT) induces the activation through interaction between the receptor and gradually accumulated cAMP, since DTT is known to inhibit cAMP-phosphodiesterase which degrades cAMP. In the present paper, we investigated the mechanism of activation of adenylate cyclase by the thiol-reducing agents, DTT and 2,3-dimercapto-1-propanol (BAL). We found that BAL activated adenylate cyclase transiently even under conditions where the intrinsic agonist supersaturated the cAMP-receptors and competitively inhibited phosphodiesterase. This result is inconsistent with the generally accepted notion. We conclude that BAL has an independent effect from those of the intrinsic agonist (cAMP) and phosphodiesterase in activation of adenylate cyclase. Since BAL could induce activation just after the activation induced by a supersaturating concentration of the intrinsic agonist had ceased, the independent effect of BAL is not a simple enhancement of the cAMP-induced activation. Our result also suggests that the cAMP-induced adaptation (but not down regulation) suppresses the BAL-induced activation while BAL itself does not induce adaptation to cAMP or BAL. We propose that the thiol-reducing reagent induces or modifies the transmembrane activation signal for adenylate cyclase.  相似文献   

2.
Binding of cyclic AMP (cAMP) to the cell surface receptor induces a transient activation of guanylate cyclase in Dictyostelium discoideum. A frigid mutant (HC85) which lacks G alpha 2, a guanine nucleotide binding protein, does not respond to cAMP. We found that 2,3-dimercapto-1-propanol (BAL) induced a continuous activation both in the frigid and in its parents. Therefore, the BAL-induced continuous activation of guanylate cyclase is independent of G alpha 2. We also found that cAMP enhanced the BAL-induced continuous activation in the frigid mutant. This result suggests that an unidentified signal transduction mechanism from the cAMP-receptor besides the one involving G alpha 2 plays a role in the enhancement of activation. Lastly, we found that the BAL-induced continuous activation was terminated by cAMP in the parental strain, but not in the frigid mutant. Therefore, the cAMP-induced suppression on the BAL-induced continuous activation is mediated through G alpha 2.  相似文献   

3.
Two substances, cAMP and 2,3-dimercapto-1-propanol (BAL) are known to induce transient activation of adenylate cyclase in Dictyostelium discoideum. A frigid mutant (HC85) has a deletion in a gene for G alpha 2, a guanine nucleotide binding protein and cannot activate the cyclase in response to cAMP. We found that BAL induced activation in the frigid mutant. This result suggests that the BAL-induced activation is independent of G alpha 2 and that BAL mimics a role of activated G alpha 2. We also found that cAMP promoted the BAL-induced activation. This result suggests that cAMP plays a role in activation through a mechanism in which G alpha 2 is not involved. We lastly showed that continuous cAMP stimulation could not inhibit the BAL-induced activation in the frigid mutant. Since the cAMP-induced inhibition observed in the wild type strain (NC4) proceeds with the time course identical to the cAMP-induced adaptation (Oyama, submitted), this result suggests that G alpha 2 is involved in adaptation of adenylate cyclase.  相似文献   

4.
Chemotactic stimulation of post-vegetative Dictyostelium cells with folic acid or aggregative cells with cAMP results in a fast transient cGMP response which peaks at 10 s; basal levels are recovered in about 30–40 s. Stimulation with folic acid or cAMP rapidly desensitizes the cells for equal or lower concentrated stimuli. However, cells remain responsive for stimuli with higher concentration, which indicates that desensitization is caused by an adaptation process. Removal of the stimulus induces deadaptation, which for both cAMP and folic acid has first order kinetics with a half-life of 1.5 min.Cells were prepared which are simultaneously sensitive to folic acid and to cAMP. The cGMP responses to saturated folic acid and cAMP stimuli are not additive, which suggests that the transduction pathways of these signals meet each other at or before the guanylate cyclase. Cells which are adapted to folic acid are not adapted to cAMP and vice versa. This demonstrates that adaptation of Dictyostelium cells to chemotactic stimuli is localized at a step in the transduction chain before the transduced folic acid and cAMP signals combine in one pathway.  相似文献   

5.
Dictyostelium discoideum cells respond to chemoattractants by transient activation of guanylate cyclase. Cyclic GMP is a second messenger that transduces the chemotactic signal. We used an electropermeabilized cell system to investigate the regulation of guanylate cyclase. Enzyme activity in permeabilized cells was dependent on the presence of a nonhydrolysable GTP analogue (e.g., GTPγS), which could not be replaced by GTP, GDP, or GMP. After the initiation of the guanylate cyclase reaction in permeabilized cells only a short burst of activity is observed, because the enzyme is inactivated with a t1.2 of about 15 s. We show that inactivation is not due to lack of substrate, resealing of the pores in the cell membrane, product inhibition by cGMP, or intrinsic instability of the enzyme. Physiological concentrations of Ca2+ ions inhibited the enzyme (half-maximal effect at 0.3 μM), whereas InsP3 had no effect. Once inactivated, the enzyme could only be reactivated after homogenization of the permeabilized cells and removal of the soluble cell fraction. This suggests that a soluble factor is involved in an autonomous process that inactivates guanylate cyclase and is triggered only after the enzyme is activated. The initial rate of guanylate cyclase activity in permeabilized cells is similar to that in intact, chemotactically activated cells. Moreover, the rate of inactivation of the enzyme in permeabilized cells and that due to adaptation in vivo are about equal. This suggests that the activation and inactivation of guanylate cyclase observed in this permeabilized cell system is related to that of chemotactic activation and adaptation in intact cells. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Following consumption of the food supply, cells of the cellular slime mould Dictyostelium discoideum aggregate and form a multicellular organism. The mechanism for cell aggregation is chemotaxis. The chemotactic signal in D. discoideum is released periodically from aggregation centers and propagated from cell to cell. cAMP mediates cell aggregation by acting as chemotactic attractant and as propagator of the signal. cAMP signals are measured by cell-surface receptors. Recent evidence indicates a role for cGMP during cAMP-mediated cell aggregation in D. discoideum .
During cell differentiation to aggregation competence, cAMP binding sites appear at the cell surface, and the activity of the enzymes adenylate cyclase and phosphodiesterase increases several-fold. In the present work we investigate the synthesis of cGMP in D. discoideum . Conditions for the assay of guanylate cyclase in cell homogenates are described. Guanylate cyclase activity was followed during cell differentiation to aggregation competence and found to increase fourfold. These results indicate that cGMP is involved in cell differentiation of D. discoideum . In contrast to adenylate cyclase, which is activated by cAMP, guanylate cyclase was under our conditions activated neither by cAMP, nor by folic acid.  相似文献   

7.
The binding of chemoattractants to cognate G protein-coupled receptors activates a variety of signaling cascades that provide spatial and temporal cues required for chemotaxis. When subjected to uniform stimulation, these responses are transient, showing an initial peak of activation followed by a period of adaptation, in which activity subsides even in the presence of stimulus. A tightly regulated balance between receptor-mediated stimulatory and inhibitory pathways controls the kinetics of activation and subsequent adaptation. In Dictyostelium, the adenylyl cyclase expressed during aggregation (ACA), which synthesizes the chemoattractant cAMP, is essential to relay the signal to neighboring cells. Here, we report that cells lacking phosphoinositide 3-kinase (PI3K) activity are deficient in signal relay. In LY294002-treated cells, this defect is because of a loss of ACA activation. In contrast, in cells lacking PI3K1 and PI3K2, the signal relay defect is because of a loss of ACA adaptation. We propose that the residual low level of 3-phosphoinositides in pi3k(1-/2-) cells is sufficient to generate the initial peak of ACA activity, yet is insufficient to sustain the inhibitory phase required for its adaptation. Thus, PI3K activity is poised to regulate both ACA activation and adaptation, thereby providing a link to ensure the proper balance of counteracting signals required to maintain optimal chemoresponsiveness.  相似文献   

8.
The activity of soluble guanylate cyclase can be increased by exposure of the enzyme to arachidonic acid or to some oxidized metabolites of the fatty acid. We have tried to determine whether activation of the enzyme by arachidonate requires that the fatty acid be converted to an oxidized metabolite, either by a possible trace contaminant of a lipoxygenase or by guanylate cyclase itself, which contains a heme moiety. Soluble guanylate cyclase purified from bovine lung was activated 4-6-fold by arachidonic acid. This activation was not dependent on the presence of oxygen in the incubation medium. No detectable metabolites of arachidonic acid were formed during incubation with soluble guanylate cyclase. Addition of soybean lipoxygenase to the incubation did not increase activation by arachidonic acid. The inhibitors of lipoxygenase activity, nordihydroguaiaretic acid and eicosatetraynoic acid, had direct effects on soluble guanylate cyclase and interfered with its activation by arachidonate, whereas another lipoxygenase inhibitor, BW 755 C, did not. The data suggest that arachidonic acid increases the activity of guanylate cyclase by direct interaction with the enzyme rather than by being converted to an active metabolite.  相似文献   

9.
Receptor-mediated activation of spermatozoan guanylate cyclase   总被引:7,自引:0,他引:7  
The sea urchin egg peptides speract (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) and resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Arg-Leu-NH2) bind to spermatozoa of the homologous species (Lytechinus pictus or Arbacia punctulata, respectively) and cause transient elevations of cyclic GMP concentrations (Hansbrough, J. R., and Garbers, D. L. (1981) J. Biol. Chem. 256, 1447-1452). The addition of these peptides to spermatozoan membrane preparations caused a rapid and dramatic (up to 25-fold) activation of guanylate cyclase. The peptide-induced activation of guanylate cyclase was transient, and the subsequent decline in enzyme activity coincided with conversion of a high Mr (phosphorylated) form of guanylate cyclase to a low Mr (dephosphorylated) form. When membranes were incubated at pH 8.0, the high Mr form was converted to the low Mr form without substantial changes in basal enzyme activity. However, the peptide-stimulated activity of the low Mr form of guanylate cyclase was much less than the peptide-stimulated activity of the high Mr form. Activation of the low Mr form by peptide was not transient and persisted for at least 10 min. In addition, the pH 8.0 treatment that caused the Mr conversion of guanylate cyclase also caused an increase in the peptide-binding capacity of the membranes. We propose a model in which activation of the membrane form of guanylate cyclase is receptor-mediated; the extent of enzyme activation is modulated by its phosphorylation state.  相似文献   

10.
The response of guanylate cyclase to addition of extracellular stimuli is well documented. Here we report for the first time the response of guanylate cyclase to removal of stimuli. Three methods were employed to terminate rapidly a stimulus of folic acid. (1) Addition of a highly active folate deaminase preparation, or (2) 12-fold dilution of the stimulated cell suspension, or (3) addition of an excess concentration of a non-agonistic derivative of folic acid, i.e., 2-deaminofolic acid, which chases the folate agonist from its cell-surface receptors. Accumulation of cGMP terminated instantaneously upon addition of deaminase, but degradation of the synthesized cGMP was not observed until 10–12 s after stimulation. Also in a cGMP phosphodiesterase-lacking ‘streamer’ mutant an instantaneous termination of further cGMP accumulation was observed upon stimulus removal. This suggests that the termination of cGMP accumulation is due to inactivation of guanylate cyclase instead of a steady state of cGMP synthesis and degradation. Further accumulation of cGMP was approx. 75% reduced upon dilution of a cell suspension after stimulation with both agonists. Stimulation by 300 nM folic acid or by 30 nM N10-methylfolic acid (a more potent agonist) yielded identical results. However, upon addition of deaminofolic acid the accumulation of cGMP continued normally if the cells had been stimulated with N10-methylfolic acid, but only slightly in the case of a folic acid stimulus. The effect of stimulus duration on desensitization was monitored; it was observed that 50% desensitization was induced by stimulation for 1 s, while 4 s was sufficient for maximal desensitization. Short stimuli were observed to elicit high levels of desensitization without much excitation of guanylate cyclase. A desensitization-like process was observed at the level of the folate-binding chemotactic receptors as well. Relationships between the cGMP response data and folic acid receptor kinetics are discussed.  相似文献   

11.
1. Escherichia coli heat-stable enterotoxin (ST) induces a secretory diarrhea by binding to receptors on brush borders of intestinal villus cells, activating particulate guanylate cyclase and increasing intracellular concentrations of guanosine 3',5'-cyclic monophosphate (cyclic GMP). 2. However, little is known concerning coupling of receptor-ligand interaction to enzyme activation. 3. This study compares the kinetics of toxin-receptor binding and enzyme activation to better understand this transmembrane signal cascade. 4. Toxin receptor binding was linear and saturable with 50% of maximum displacement of [125I]ST by unlabeled toxin observed at 1.1 x 10(-7) M. ST increased the maximum velocity (Vmax) of guanylate cyclase with magnesium or manganese as the cation substrate without altering the affinity of the enzyme for its substrate or its positive cooperativity. 5. The concentration of toxin yielding half-maximum stimulation of guanylate cyclase was 1.2 x 10(-6) M, 10-fold higher than the affinity of the ligand for its receptor. 6. These data are consistent with the suggestion that ST-receptor interaction is coupled to activation of particulate guanylate cyclase. 7. However, the discrepancy between the affinity of ST for its receptor and its efficacy in activating the enzyme suggests that this coupling is complex. 8. Possible mechanisms underlying this coupling are discussed.  相似文献   

12.
Adenine nucleotides activate basal particulate guanylate cyclase in rat lung membranes. Activation is specific for adenine and not guanine, cytidine or uridine nucleotides. The concentration of adenine nucleotides yielding half-maximum activation of particulate guanylate cyclase is 0.1 mM and this nucleotide activates the enzyme by increasing maximum velocity 11-fold without altering affinity for substrate. Activation is specific for particulate guanylate cyclase, since soluble enzyme is inhibited by adenine nucleotides. Similarly, activation is specific for magnesium as the enzyme substrate cation cofactor, since adenine nucleotides inhibit particulate guanylate cyclase when manganese is used. Adenine nucleotide regulation of particulate guanylate cyclase may occur by a different molecular mechanism compared to other activators, since the effects of these nucleotides are synergistic with those of detergent, hemin and atrial natriuretic peptides. Cystamine inhibits adenine nucleotide activation of particulate guanylate cyclase at concentrations having minimal effects on basal enzyme activity suggesting a role for critical sulfhydryls in mechanisms underlying nucleotide regulation of particulate guanylate cyclase. Purification and quantitative recovery of particulate guanylate cyclase by substrate affinity chromatography results in the loss of adenine nucleotide regulation. These data suggest that adenine nucleotides may be important in the regulation of basal and activated particulate guanylate cyclase and may be mediated by an adenine nucleotide-binding protein which is separate from that enzyme.  相似文献   

13.
Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.  相似文献   

14.
Guanylate cyclase from human platelets was over 90% soluble, even when assayed in the presence of Triton X-100. A time-dependent increase in activity occurred when the enzyme was incubated at 37 degrees and this spontaneous activation was prevented by dithiothreitol. Arachidonic acid stimulated the soluble enzyme activity approximately 2- to 3-fold. Linear double reciprocal plots of guanylate cyclase activation as a function of arachidonic acid concentration were obtained with a Ka value of 2.1 muM. A Hill coefficient of 0.98 was obtained indicating that one fatty acid binding site is present for each catalytic site. Concentrations of arachidonic acid in excess of 10 muM caused less than maximal stimulation. Dihomo-gamma-linolenic acid and two polyunsaturated 22 carbon fatty acids stimulated the activity of guanylate cyclase to the same degree as did arachidonic acid. The methyl ester of arachidonic acid was much less effective. Diene, monoene, and saturated fatty acids of various carbon chain lengths as well as prostaglandins E1, E2, and F2alpha, had little or no effect. These data indicate that the structural determined required for stimulation by fatty acids of soluble platelet guanylate cyclase is a 1,4,7-octatriene group with its first double bond in the omega6 position. This structural group is similar to the substrate specificity determinants of fatty acid cyclooxygenase, the first enzyme of the prostaglandin synthetase complex. However, conversion of arachidonic acid to a metabolite of the cyclooxygenase pathway did not appear to be required for activation of the cyclase since activation occurred in the 105,000 X g supernatant fraction and pretreatment of this fraction with aspirin did not alter the ability of arachidonic acid to activate guanylate cyclase. Kinetic studies showed that the stimulation of guanylate cyclase by arachidonic acid is primarily an effect on maximal velocity. Arachidonic acid did not alter the concentration of free Mn2+ required for optimal activity. It is concluded that the activity of the soluble form of guanylate cyclase in cell-free preparations of human platelets can be increased by a lipid-protein interaction involving specific polyunsaturated fatty acids.  相似文献   

15.
Recently, we demonstrated the presence of multiple folate-binding sites on the cell surface of Dictyostelium discoideum. These sites were divided into two major classes, with different ligand specificities (A and B). Each major class consists of several interconvertible subtypes. In the present report, the ability of 13 folate analogs to activate both adenylate and guanylate cyclase in pre- as well as postaggregative cells is examined. The patterns of correlation between binding and activation data indicate that guanylate cyclase activation is mediated by the B-sites in both developmental stages (P less than 0.001). In postaggregative cells, adenylate cyclase also seems to be activated by the B-sites (P less than 0.001). In contrast, adenylate cyclase activation in preaggregative cells was well correlated with the specificity of A-sites (P less than 0.01). Remarkably, the potencies of activation were less affected by molecular modifications than the binding affinities were, as suggested by a slope of 0.4 in a plot of K0.5 values of activation vs. binding. This observation argues against the existence of a transduction mechanism in which the response is proportional to receptor occupancy. For the B-receptor, however, the degree of receptor occupancy appears to determine the response. The existence of folic acid antagonists is demonstrated, some of which are specific for either A-sites coupled to adenylate cyclase or for B-sites coupled to guanylate cyclase.  相似文献   

16.
When added alone, the arylamine procarcinogens N-acetyl-aminofluorene, 4-acetyl-aminobiphenyl or their N-hydroxy derivatives failed to alter partially purified soluble guanylate cyclase from rat liver or particulate guanylate cyclase activity from colonic mucosa. However, addition of linoleic acid hydroperoxide to the enzyme preparation in the presence N-OH-acetyl-aminofluorene or N-OH-acetyl-aminobiphenyl significantly increased guanylate cyclase activity. With linoleic acid hydroperoxide plus N-OH-acetyl-aminofluorene, both the activation of hepatic guanylate cyclase and the formation of the carcinogen oxidation product 2-nitrosofluorene required hematin but not molecular O2. Both processes were inhibited by ascorbic acid. These data strongly imply that guanylate cyclase activation was dependent upon hematin catalyzed oxidation of N-OH-acetyl-aminofluorene by the lipid peroxide. The results provide the first evidence that guanylate cyclase activation can occur during the conversion of a procarcinogen to a more reactive chemical species, and thereby emphasize the importance of examining carcinogen interaction with the GC system under conditions which permit such chemical conversion.  相似文献   

17.
The mechanism by which arachidonic acid activates soluble guanylate cyclase purified from bovine lung is partially elucidated. Unlike enzyme activation by nitric oxide (NO), which required the presence of enzyme-bound heme, enzyme activation by arachidonic acid was inhibited by heme. Human but not bovine serum albumin in the presence of NaF abolished activation of heme-containing guanylate cyclase by NO and nitroso compounds, whereas enzyme activation by arachidonic acid was markedly enhanced. Addition of heme to enzyme reaction mixtures restored enzyme activation by NO but inhibited enzyme activation by arachidonic acid. Whereas heme-containing guanylate cyclase was activated only 4- to 5-fold by arachidonic or linoleic acid, both heme-deficient and albumin-treated heme-containing enzymes were activated over 20-fold. Spectrophotometric analysis showed that human serum albumin promoted the reversible dissociation of heme from guanylate cyclase. Arachidonic acid appeared to bind to the hydrophobic heme-binding site on guanylate cyclase but the mechanism of enzyme activation was dissimilar to that for NO or protoporphyrin IX. Enzyme activation by arachidonic acid was insensitive to Methylene blue or KCN, was inhibited competitively by metalloporphyrins, and was abolished by lipoxygenase. Whereas NO and protoporphyrin IX lowered the apparent Km and Ki for MgGTP and uncomplexed Mg2+, arachidonic and linoleic acids failed to alter these kinetic parameters. Thus, human serum albumin can promote the reversible dissociation of heme from soluble guanylate cyclase and thereby abolish enzyme activation by NO but markedly enhance activation by polyunsaturated fatty acids. Arachidonic acid activates soluble guanylate cyclase by heme-independent mechanisms that are dissimilar to the mechanism of enzyme activation caused by protoporphyrin IX.  相似文献   

18.
Conditions necessary for the activation by ascorbic acid of soluble guanylate cyclase purified from bovine lung have been examined. Ascorbic acid (0.1-10 mM) did not directly activate the enzyme, nonetheless, pronounced activation by ascorbate (3-10 mM) was observed in incubation mixtures containing 1 microM bovine liver catalase. Superoxide dismutase (SOD) and mannitol did not affect the catalase-dependent activation of guanylate cyclase elicited by ascorbate, suggesting that superoxide anion and hydroxyl radical were not mediating the activation of the enzyme. However, SOD enhanced the relatively low level activation of the enzyme elicited by catalase in the absence of added ascorbate. Pronounced inhibition (both with and without added ascorbate) was observed of catalase-dependent activation of guanylate cyclase by either ethanol (100 mM) or a fungal catalase preparation. Neither ethanol nor fungal catalase inhibited activation of guanylate cyclase by S-nitrosyl-N-acetyl-penicillamine (SNAP), a source of the nitric oxide free radical. These observations indicate that autoxidation of ascorbic acid or thiols present with the guanylate cyclase preparation leads to generation of H2O2, and its metabolism by bovine liver catalase mediates the concomitant activation of guanylate cyclase. The mechanism of activation appears to be associated with the presence of Compound I of catalase and to be inhibited by superoxide anion.  相似文献   

19.
The purpose of this study was to elucidate the mechanisms by which arachidonic acid activates guanylate cyclase from guinea pig lung. Guanylate cyclase activities in both homogenate and soluble fractions of lung were examined. Guanylate cyclase activity was determined by measuring formtion of [32-P] cyclic GMP from alpha-[32-P] GTP in the presence of Mn2+, a phosphodiesterase inhibitor and a suitable GTP regenerating system. Arachidonic acid, and to a slight extent dihomo-gamma-linolenic acid, activated guanylate cyclase in homogenate but not soluble fractions. Similarly, phospholipase A2 activated homogenate but not soluble guanylate cyclase. Methyl arachidonate, linolenic, linoleic and oleic acids did not activate guanylate cyclase in either fraction. High concentrations of indomethacin, meclofenamate and aspirin inhibited activation of homogenate guanylate cyclase by arachidonic acid and phospholipase A2, without altering basal enzyme activity. These data suggested that a product of cyclooxygenase activity, present in the microsomal fraction, may have accounted for the capacity of arachidonic acid to activate homogenate guanylate cyclase. This view was supported by the findings that addition of the microsomal fraction to be soluble fraction enabled arachidonic acid to activate soluble guanylate cyclase, an effect which was reduced with cycloooxygenase inhibitors. Lipoxygenase activated guanylate cyclase in homogenate and soluble fractions. Arachidonic acid potentiated the activation of soluble guanylate cyclase by lipoxygenase, and this effect was inhibited with nordihydroguairetic acid, 1-phenyl-3-pyrazolidone and hydroquinone, but not with high concentrations of indomethacin, meclofenamate or aspirin. These data suggest that arachidonic acid activates guinea pig lung guanylate cyclase indirectly, via two independent mechanisms, one involving the microsomal fraction and the other involving lipoxygenase.  相似文献   

20.
We isolated cDNAs encoding a 115 kd human atrial natriuretic peptide (alpha ANP) receptor (ANP-A receptor) that possesses guanylate cyclase activity, by low-stringency hybridization with sea urchin Arbacia punctulata membrane guanylate cyclase probes. The human ANP-A receptor has a 32 residue signal sequence followed by a 441 residue extracellular domain homologous to the 60 kd ANP-C receptor. A 21 residue transmembrane domain precedes a 568 residue cytoplasmic domain with homology to the protein kinase family and to a subunit of the soluble guanylate cyclase. COS-7 cells transfected with an ANP-A receptor expression vector displayed specific [125I]alpha ANP binding, and exhibited alpha ANP stimulated cGMP production. These data demonstrate a new paradigm of cellular signal transduction where extracellular ligand binding allosterically regulates cyclic nucleotide second-messenger production by a receptor cytoplasmic catalytic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号